In this paper we address some ill-posed problems involving the heat or the wave equation in one dimension, in particular the backward heat equation and the heat/wave equation with lateral Cauchy data. The main objective is to introduce some variational mixed formulations of quasi-reversibility which enable us to solve these ill-posed problems by using some classical Lagrange finite elements. The inverse obstacle problems with initial condition and lateral Cauchy data for heat/wave equation are also considered, by using an elementary level set method combined with the quasi-reversibility method. Some numerical experiments are presented to illustrate the feasibility for our strategy in all those situations.
Floating offshore wind turbines (FOWTs) are subjected to platform motion induced by wind and wave loads. The oscillatory movement trigger vortex instabilities, modifying the wake structure, influencing the flow reaching downstream wind turbines. In this work, the wake of a FOWT is analysed by means of numerical simulations and comparison with linear stability theory. Two simplified models based on the stability of vortices are developed for all degrees of freedom of turbine motion. In our numerical simulations, the wind turbine blades are modeled as actuator lines and a spectral-element method with low dispersion and dissipation is employed to study the evolution of the perturbations. The turbine motion excites vortex instability modes predicted by the linear stability of helical vortices. The flow structures that are formed in the non-linear regime are a consequence of the growth of these modes and preserve some of the characteristics that can be explained and predicted by the linear theory. The number of vortices that interact and the growth rate of disturbances are well predicted by a simple stability model of a two-dimensional row of vortices. For all types of motion, the highest growth rate is observed when the frequency of motion is one and a half the frequency of rotation of the turbine; that induces the out-of-phase vortex pairing mechanism. For lower frequencies of motion, several vortices coalesce to form large flow structures, which cause high amplitude of oscillations in the streamwise velocities, that may increase fatigue or induce high amplitude motion on downstream turbines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.