Composites based on multiwall carbon nanotubes (MWCNTs) and the block copolymer styrene-butadiene-styrene with two different contents of styrene have been investigated and their electrical conductivity and mechanical properties have been evaluated. The composites were prepared by a solution casting procedure, using a dispersant agent for the MWCNTs. Conductivity values of 10 À4 and 1.6 S cm À1 have been obtained for samples containing 1 and 12 wt % of MWCNTs, respectively. The percolation threshold achieved for these systems was $0.25 wt %.According to dynamic mechanical analysis, the MWCNTs interact with both phases of the copolymers, acting as a reinforcement filler, whereas the dispersant agent acts as a plasticizer. However, it was shown that the reinforcing effect of the MWCNTs overcomes the latter, resulting in an overall improvement of mechanical properties of the composites.
Polymeric gels have been an important category for material scientists due its versatile structural features. Hence, hydrogels are being used to reduce excess production water in oil reservoirs. In this work, cross-linked partially hydrolyzed polyacrylamide (HPAM) composite hydrogels impregnated with bentonite clay (Bent) and bentonite clay modified (Orgbentent) with the surfactant hexadecyltrimethylammonium bromide were synthesized and characterized as a sealing agent in high water producing permeable zones in the petroleum industry. The concept of utilizing hydrophobically modified clay as an inorganic additive in the hydrogel matrix emanates from the fact that this additive exhibit greater interaction with the polymer chains. These interactions can promote the inherent properties of the hydrogel. Polyethyleneimine (PEI) was chosen as the cross-linking agent. HPAM/PEI conventional hydrogels and HPAM/PEI/Bent and HPAM/PEI/Orgbent at 100 mg•L −1 clay were synthesized. The developed hydrogels were characterized by a hybrid rheometer and Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) instruments. Rheological results reveal that the (HPAM/PEI/Bent-3 and HPAM/PEI/Orgbent-3) composite hydrogels showed higher elastic modulus (G′) and durability in the studied conditions (stable at 30 days) than conventional ones (HPAM/PEI), indicating the dispersion and reinforcing effect of clay. The functional groups of these hydrogels were confirmed by FTIR, and TGA demonstrated the structural reinforcement due to the presence of the clays, which had lower weight loss than the conventional hydrogel. The hydrogel morphologies were analyzed by SEM, and the results corroborated with those obtained by TGA, indicating better structural reinforcement when using organophilic clay.
Engineered Water Injection (EWI) has been increasingly tested and applied to enhance fluid displacement in reservoirs. The modification of ionic concentration provides interactions with the pore wall, which facilitates the oil mobility. This mechanism in carbonates alters the natural rock wettability being quite an attractive recovery method. Currently, numerical simulation with this injection method remains limited to simplified models based on experimental data. Therefore, this study uses Artificial Neural Networks (ANN) learnability to incorporate the analytical correlation between the ionic combination and the relative permeability (Kr), which depicts the wettability alteration. The ionic composition in the injection system of a Brazilian Pre-Salt benchmark is optimized to maximize the Net Present Value (NPV) of the field. The optimization results indicate the EWI to be the most profitable method for the cases tested. EWI also increased oil recovery by about 8.7% with the same injected amount and reduced the accumulated water production around 52%, compared to the common water injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.