Auxiliary services are vital for the operation of a substation. If a contingency affects the distribution feeder that provides energy for the auxiliary services, it could lead to the unavailability of the substation’s service. Therefore, backup systems such as diesel generators are used. Another alternative is the adoption of a microgrid with batteries and photovoltaic generation to supply substation auxiliary services during a contingency. Nevertheless, high battery costs and the intermittence of photovoltaic generation requires a careful analysis so the microgrid capacity is defined in a compromise between the investment and the unavailability reduction of auxiliary services. This paper proposes a method for the capacity sizing of a microgrid with batteries, photovoltaic generation, and bidirectional inverters to supply auxiliary services in substations under a contingency. A set of alternatives is assessed through exhaustive search and Monte Carlo simulations to cater for uncertainties of contingencies and variation of solar irradiation. An unavailability index is proposed to measure the contribution of the integrated hybrid microgrid to reduce the time that the substation is not in operation. Simulations carried out showed that the proposed method identifies the microgrid capacity with the lowest investment that satisfies a goal for the unavailability of the substation service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.