Dermatophytosis are one of the most common fungal infections in the world. They compromise keratinized tissues and the main etiological agent is Trichophyton rubrum. Macrophages are key cells in innate immunity and prominent sources of IL-1b, a potent inflammatory cytokine whose main production pathway is by the activation of inflammasomes and caspase-1. However, the role of inflammasomes and IL-1 signaling against T.rubrum has not been reported. In this work, we observed that bone marrow-derived macrophages produce IL-1b in response to T.rubrum conidia in a NLRP3-, ASC-and caspase-1-dependent fashion. Curiously, lack of IL-1 signaling promoted hyphae development, uncovering a protective role for IL-1b in macrophages. In addition, mice lacking IL-1R showed reduced IL-17 production, a key cytokine in the antifungal defense, in response to T.rubrum. Our findings point to a prominent role of IL-1 signaling in the immune response to T.rubrum, opening the venue for the study of this pathway in other fungal infections.
Here we investigated the importance of Toll-like receptor 4 (TLR-4) in innate immune response to Sporothrix brasiliensis, a virulent fungus of Sporothrix spp. In vitro assays, using C57Bl/6 (wild type [WT]) bone marrow-derived macrophages (BMDMs), and TLR-4 knockout (TLR-4-/-) showed that the absence of TLR-4 resulted in impaired phagocytosis and lower levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, and nitric oxide. In vivo assays were also performed, and the mice (WT and TLR-4-/-) were intraperitoneally infected with S. brasiliensis yeast ATCC MyA-4831 and euthanized on days 7, 14, and 28 postinfection, with the following parameters evaluated: fungal burden in liver, spleen, kidney, and brain, and the production of cytokines interferon γ (IFN-γ), TNF-α, IL-2, IL-4, IL-6, and IL-10. The results demonstrate the macrophages dependency on TLR-4 for inflammatory activation and in the absence of TLR-4 during experimental S. brasiliensis infection enhanced dissemination occurred after 14 and 28 days. These data show that TLR-4 signals are important for the recognition of S. brasiliensis by macrophages, and their absence promotes the persistence of the infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.