Deconstructive functionalization involves C–C bond cleavage followed by bond construction on one or more of the constituent carbons. For example, ozonolysis
1
and olefin metathesis
2
,
3
have allowed each carbon in C–C double bonds to be viewed as a functional group. Despite the significant advances in deconstructive functionalizations involving scission of C–C double bonds, there are very few methods that achieve C(
sp
3
)–C(
sp
3
) single bond cleavage/functionalization, especially in relatively unstrained cyclic systems. Here, we report a deconstructive strategy to transform saturated nitrogen heterocycles such as piperidines and pyrrolidines, important moities in bioactive molecules, into halogen-containing acyclic amine derivatives through sequential C(
sp
3
)–N/C(
sp
3
)–C(
sp
3
) single bond cleavage followed by C(
sp
3
)–halogen bond formation. The resulting acyclic haloamines serve as versatile intermediates that are transformed into a variety of structural motifs through substitution reactions. In this way, skeletal remodeling of cyclic amines, which constitutes a scaffold hop, can be achieved. The value of this deconstructive strategy has been demonstrated through the late-stage diversification of proline-containing peptides.
Deconstructive functionalizations involving scission of carbon-carbon double bonds are well established. In contrast, unstrained C(sp3)–C(sp3) bond cleavage and functionalization have less precedent. Here we report the use of deconstructive fluorination to access mono- and difluorinated amine derivatives by C(sp3)–C(sp3) bond cleavage in saturated nitrogen heterocycles such as piperidines and pyrrolidines. Silver-mediated ring-opening fluorination using Selectfluor highlights a strategy for cyclic amine functionalization and late-stage skeletal diversification, establishing cyclic amines as synthons for amino alkyl radicals and providing synthetic routes to valuable building blocks.
Saturated cyclic amines (aza-cycles) are ubiquitous structural motifs found in pharmaceuticals, agrochemicals, and bioactive natural products. Given their importance, methods that directly functionalize aza-cycles are in high demand. Herein, we disclose a fundamentally different approach to functionalizing cyclic amines which relies on C−C cleavage and attendant cross-coupling. The initial functionalization step is the generation of underexplored N-fused bicyclo α-hydroxy-β-lactams under mild, visible light conditions using a Norrish−Yang process to affect α-functionalization of saturated cyclic amines. This approach is complementary to previous methods for the C−H functionalization of aza-cycles and provides unique access to various cross-coupling adducts. In the course of these studies, we have also uncovered an orthogonal, base-promoted opening of the N-fused bicyclo α-hydroxy-β-lactams. Computational studies have provided insight into the origin of the complementary C−C cleavage processes.
Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-alkylation of arenes using di-tert-butylperoxide and tertiary alcohols.
3-Nitromethyleneoxetane: A very versatile and promising building block for energetic oxetane-based monomers Max Borna‡, Thomas C. Fessardb, Lucas Göttemannb, Konstantin Karaghiosoffa, Jakob Planka and Thomas M. Klapötke*aIn the field...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.