In the past few years, the World Health Organization has been warning that the post-antibiotic era is an increasingly real threat. The rising and disseminated resistance to antibiotics made mandatory the search for new drugs and/or alternative therapies that are able to eliminate resistant microorganisms and impair the development of new forms of resistance. In this context, antimicrobial photodynamic therapy (aPDT) and helical cationic antimicrobial peptides (AMP) are highlighted for the treatment of localized infections. This study aimed to combine the AMP aurein 1.2 to aPDT using Enterococcus faecalis as a model strain. Our results demonstrate that the combination of aPDT with aurein 1.2 proved to be a feasible alternative capable of completely eliminating E. faecalis employing low concentrations of both PS and AMP, in comparison with the individual therapies. Aurein 1.2 is capable of enhancing the aPDT activity whenever mediated by methylene blue or chlorin-e6, but not by curcumin, revealing a PS-dependent mechanism. The combined treatment was also effective against different strains; noteworthy, it completely eliminated a vancomycin-resistant strain of Enterococcus faecium. Our results suggest that this combined protocol must be exploited for clinical applications in localized infections as an alternative to antibiotics.
The vaginal mucosa is a very promising route for drug administration due to its high permeability and the possibility to bypass first pass metabolism; however, current vaginal dosage forms present low retention times due to their dilution in vaginal fluids, which hampers the efficacy of many pharmacological treatments. In order to overcome these problems, this study proposes to develop a mucoadhesive in situ gelling liquid crystalline precursor system composed of 30% of oleic acid and cholesterol (7:1), 40% of ethoxylated and propoxylated cetyl alcohol, and 30% of a dispersion of 16% Poloxamer 407. The effect of the dilution with simulated vaginal fluid (SVF) on this system was evaluated by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheological studies, texture profile analysis (TPA), mucoadhesion study, in vitro drug release test using hypericin (HYP) as drug model, and cytotoxicity assay. PLM and SAXS confirmed the formation of an isotropic system. After the addition of three different concentrations of SVF (30, 50, and 100%), the resultant formulations presented anisotropy and characteristics of viscous lamellar phases. Rheology shows that formulations with SVF behaved as a non-Newtonian fluid with suitable shear thinning for vaginal application. TPA and mucoadhesion assays indicated the formation of long-range ordered systems as the amount of SVF increases which may assist in the fixation of the formulation on the vaginal mucosa. The formulations were able to control about 75% of the released HYP demonstrating a sustained release profile. Finally, all formulations acted as safe vaginal drug delivery systems.
The action of diflubenzuron (DFB) was evaluated in a freshwater fish, Prochilodus lineatus, after exposure to 0.06, 0.12, 0.25, or 0.50 mg L(-1) DFB for 14 days. Erythrocyte nuclear abnormalities (ENA), the gill activity of Na(+)/K(+)-ATPase, H(+)-ATPase and carbonic anhydrase (CA), and lipid peroxidation (LPO) and histopathological changes in the gills and liver were determined. The number of micronuclei increased in fish exposed to 0.25 and 0.50 mg L(-1) DFB. Plasma Cl(-) and the CA activity decreased, while the activity of Na(+)/K(+)-ATPase and of H(+)-ATPase increased in fish exposed to 0.25 and 0.50 mg L(-1) DFB. LPO did not change in the gills but increased in the liver of fish exposed to 0.25 and 0.50 mg L(-1) DFB. In the gills, histopathological changes indicated disperse lesions and slight to moderate damage in fish exposed to 0.50 mg L(-1) DFB, whereas in the liver, these changes were significantly greater in fish exposed to 0.25 and 0.50 mg L(-1) DFB, indicating moderate to severe damage. Continuous exposure to DFB is potentially toxic to P. lineatus, causing heath disorders when the fish is exposed to the two highest DFB concentrations, which are applied to control parasites in aquaculture and to control mosquito populations in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.