The influence of calendering and laser structuring on the pore structure and electrochemical performance of electrodes is reported. Graphite anodes of varying bulk porosity were micro structured with pulsed laser radiation. Using scanning electron microscopy and energy-dispersive X-ray spectroscopy, laser structuring was found to release superficial pore clogging caused by calendering and to result in binder agglomerates on the electrode surfaces. Structured electrodes showed higher porosities than their unstructured counterparts due to a thickness increase and material removal, but no significant change in the pore size distribution was detected using mercury intrusion porosimetry. Electrochemical impedance spectra of symmetric battery cells revealed increasing ionic resistances and tortuosities for decreasing electrode porosities. Laser structuring significantly reduced the underlying lithium-ion diffusion limitations at all porosity levels. In a discharge rate test, performance deteriorations at high currents were found to be amplified by calendering and could be diminished by electrode structuring. The performance improvements by laser structuring moved towards lower C-rates for stronger compressed anodes. Despite their growth in thickness and porosity, laser structured graphite anodes showed a higher volumetric energy density at high currents than unstructured electrodes, which demonstrates the potential of electrode structuring for highly compressed anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.