While deep learning technologies for computer vision have developed rapidly since 2012, modeling of remote sensing systems has remained focused around human vision. In particular, remote sensing systems are usually constructed to optimize sensing cost-quality tradeoffs with respect to human image interpretability. While some recent studies have explored remote sensing system design as a function of simple computer vision algorithm performance, there has been little work relating this design to the state of the art in computer vision: deep learning with convolutional neural networks. We develop experimental systems to conduct this analysis, showing results with modern deep learning algorithms and recent overhead image data. Our results are compared to standard image quality measurements based on human visual perception, and we conclude not only that machine and human interpretability differ significantly but also that computer vision performance is largely self-consistent across a range of disparate conditions. This paper is presented as a cornerstone for a new generation of sensor design systems that focus on computer algorithm performance instead of human visual perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.