With the rapid accumulation of electronic health record (EHR) data, deep learning (DL) models have exhibited promising performance on patient risk prediction. Recent advances have also demonstrated the effectiveness of knowledge graphs (KG) in providing valuable prior knowledge for further improving DL model performance. However, it is still unclear how KG can be utilized to encode high-order relations among clinical concepts and how DL models can make full use of the encoded concept relations to solve real-world healthcare problems and to interpret the outcomes. We propose a novel knowledge graph guided double attention LSTM model named KGDAL for rolling mortality prediction for critically ill patients with acute kidney injury requiring dialysis (AKI-D). KGDAL constructs a KG-based two-dimension attention in both time and feature spaces. In the experiment with two large healthcare datasets, we compared KGDAL with a variety of rolling mortality prediction models and conducted an ablation study to test the effectiveness, efficacy, and contribution of different attention mechanisms. The results showed that KGDAL clearly outperformed all the compared models. Also, KGDAL-derived patient risk trajectories may assist healthcare providers to make timely decisions and actions. The source code, sample data, and manual of KGDAL are available at https://github.com/lucasliu0928/KGDAL.
Rapid accumulation of temporal Electronic Health Record (EHR) data and recent advances in deep learning have shown high potential in precisely and timely predicting patients' risks using AI. However, most existing risk prediction approaches ignore the complex asynchronous and irregular problems in real-world EHR data. This paper proposes a novel approach called Knowledge-guIded Time-aware LSTM (KIT-LSTM) for continuous mortality predictions using EHR. KIT-LSTM extends LSTM with two time-aware gates and a knowledge-aware gate to better model EHR and interprets results. Experiments on real-world data for patients with acute kidney injury with dialysis (AKI-D) demonstrate that KIT-LSTM performs better than the state-of-the-art methods for predicting patients' risk trajectories and model interpretation. KIT-LSTM can better support timely decision-making for clinicians.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.