This paper describes the development of a surface-acoustic-wave (SAW) sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene), which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.
Conductive polymer composite sensors have shown great potential in identifying gaseous analytes. To more thoroughly understand the physical and chemical mechanisms of this type of sensor, a mathematical model was developed by combining two sub-models: a conductivity model and a thermodynamic model, which gives a relationship between the vapor concentration of analyte(s) and the change of the sensor signals. In this work, 64 chemiresistors representing eight different carbon concentrations (8-60 vol% carbon) were constructed by depositing thin films of a carbon-black/polyisobutylene composite onto concentric spiral platinum electrodes on a silicon chip. The responses of the sensors were measured in dry air and at various vapor pressures of toluene and trichloroethylene. Three parameters in the conductivity model were determined by fitting the experimental data. It was shown that by applying this model, the sensor responses can be adequately predicted for given vapor pressures; furthermore the analyte vapor concentrations can be estimated based on the sensor responses. This model will guide the improvement of the design and fabrication of conductive polymer composite sensors for detecting and identifying mixtures of organic vapors.
a b s t r a c tMicrobial biomass can clog porous media and ultimately affect both structural and mineral trapping of CO 2 in geological carbon storage reservoirs. Whether biomass can remain intact following a sudden decrease in groundwater pH, a geochemical change associated with CO 2 injection, is unclear. We examined this question using twelve biologically-active and three control column-reactor experiments. Cell abundance and distribution was monitored using confocal microscopy, plating, and direct counting. Hydraulic conductivity (K) was monitored using pressure sensors. Growth occurred for four days at neutral pH. During that time, K within the clogged portion of the reactors decreased from 0.013 to 0.0006 cm s −1 on average, a 1.47 log reduction. Next, the pH of the inflowing aqueous medium was lowered to pH 4 in six experiments and pH 5.7 in six experiments. As a result, K increased in five of the pH 4 experiments and two of the pH 5.7 experiments. Despite this increase, however, the columns remained largely clogged. Compared to pre-inoculation K values, log reductions averaged 1.13 and 1.44 in pH 4 and pH 5.7 experiments, respectively. Our findings show that biomass can largely remain intact following acidification and continue to reduce K, even when considerable cell stress and death occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.