Summary
Ants (Hymenoptera: Formicidae) are familiar inhabitants of most terrestrial environments. Although we are aware of the ability of many species to sting, knowledge of ant venom chemistry remains limited. Herein, we describe the discovery and characterization of an
O
-linked glycopeptide (Mg7a) as a major component of the venom of the ant
Myrmecia gulosa
. Electron transfer dissociation and higher-energy collisional dissociation tandem mass spectrometry were used to localize three α-
N
-acetylgalactosaminyl residues (α-GalNAc) present on the 63-residue peptide. To allow for functional studies, we synthesized the full-length glycosylated peptide via solid-phase peptide synthesis, combined with diselenide–selenoester ligation-deselenization chemistry. We show that Mg7a is paralytic and lethal to insects, and triggers pain behavior and inflammation in mammals, which it achieves through a membrane-targeting mode of action. Deglycosylation of Mg7a renders it insoluble in aqueous solution, suggesting a key solubilizing role of the
O
-glycans.
The development of an iterative one-pot peptide ligation strategy is described that capitalises on the rapid and efficient nature of the diselenide-selenoester ligation reaction, together with photodeselenisation chemistry. This ligation...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.