A target set selection model is a graph G with a threshold function τ : V → N upper-bounded by the vertex degree. For a given model, a set S0 ⊆ V (G) is a target set if V (G) can be partitioned into non-empty subsets S0, S1, . . . , St such that, for i ∈ {1, . . . , t}, Si contains exactly every vertex v having at least τ (v) neighbors in S0 ∪ • • • ∪ Si−1. We say that t is the activation time tτ (S0) of the target set S0. The problem of, given such a model, finding a target set of minimum size has been extensively studied in the literature. In this article, we investigate its variant, which we call TSS-time, in which the goal is to find a target set S0 that maximizes tτ (S0). That is, given a graph G, a threshold function τ in G, and an integer k, the objective of the TSS-time problem is to decide whether G contains a target set S0 such that tτ (S0) ≥ k. Let τ * = max v∈V (G) τ (v). Our main result is the following dichotomy about the complexity of TSS-time when G belongs to a minor-closed graph class C: if C has bounded local treewidth, the problem is FPT parameterized by k and τ ; otherwise, it is NP-complete even for fixed k = 4 and τ = 2. We also prove that, with τ * = 2, the problem is NP-hard in bipartite graphs for fixed k = 5, and from previous results we observe that TSS-time is NP-hard in planar graphs and W[1]-hard parameterized by treewidth. Finally, we present a linear-time algorithm to find a target set S0 in a given tree maximizing tτ (S0).
ACM Subject ClassificationMathematics of computing → Graph algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.