Histamine exists in a multitude of foods and displays an emerging role within food intolerances. Our aim was to identify the activity of porcine diamine oxidase (DAO) required for the in vitro degradation of histamine amounts that are found in typical meals containing histamine (75 mg, equaled 150 mg/L). Furthermore, we investigated an actual dietary supplement that is commercially available for histamine intolerant individuals for its histamine reduction capability. Kinetic investigations of porcine DAO showed a substrate inhibition by histamine concentrations greater than 56 mg/L (0.5 mM). The stability of free porcine DAO was tested in a fed state simulated intestinal fluid and exhibited a half‐life period of around 19 min. A total of 50 nanokatal (nkat) free porcine DAO, which equaled the amount of enzyme isolated from around 100 g pig kidney, were necessary for the in vitro reduction of around 90% of the histamine. The dietary supplement that contains a pig kidney extract did not show DAO activity. Instead, the used histamine (0.75 mg) was apparently reduced due to the adsorption of histamine onto a capsule component by 18.9 ± 2.3% within 5 hr. Although the capsule preparation retained its overall structure and shape for at least 90 min in simulated gastric fluid, the apparent histamine reduction was significantly reduced to 12.1 ± 2.3% (P ≤ 0.05). In conclusion, an alternative to the pig kidney DAO or an improved capsule preparation is needed to ensure an adequate supplementation for histamine‐intolerant humans. Practical Application Histamine intolerance is an emerging issue in our society and the intolerance‐related physiological symptoms are currently not reliably treatable due to a lack of scientific investigation. A commercially available dietary supplement for histamine intolerance does not fulfil the requirements for a satisfactory histamine reduction in intolerant humans. The activity of the histamine degrading enzyme diamine oxidase, required for a satisfactory histamine degradation, is by far higher than the theoretical amount apparently given in the dietary supplement. With this knowledge, it is obvious that improved food supplements must be developed to help histamine intolerant humans.
The consumption of foods fraught with histamine can lead to various allergy-like symptoms if the histamine is not sufficiently degraded in the human body. The degradation occurs primarily in the small intestine, naturally catalyzed by the human diamine oxidase (DAO). An inherent or acquired deficiency in human DAO function causes the accumulation of histamine and subsequent intrusion of histamine into the bloodstream. The histamine exerts its effects acting on different histamine receptors all over the body but also directly in the intestinal lumen. The inability to degrade sufficient amounts of dietary histamine is known as the ‘histamine intolerance’. It would be preferable to solve this problem initially by the production of histamine-free or -reduced foods and by the oral supplementation of exogenous DAO supporting the human DAO in the small intestine. For the latter, DAOs from mammalian, herbal and microbial sources may be applicable. Microbial DAOs seem to be the most promising choice due to their possibility of an efficient biotechnological production in suitable microbial hosts. However, their biochemical properties, such as activity and stability under process conditions and substrate selectivity, play important roles for their successful application. This review deals with the advances and challenges of DAOs and other histamine-oxidizing enzymes for their potential application as processing aids for the production of histamine-reduced foods or as orally administered adjuvants to humans who have been eating food fraught with histamine.
Enzymatic hydrolysis and downstream processing operations, such as centrifugation and ultra-filtration, reduced the antigenicity of wheat gluten hydrolysates. Gluten-free hydrolysates were obtained with Flavourzyme after centrifugation (25 g L(-1) substrate) and after 1 kDa ultra-filtration (100 g L(-1) substrate). A multiple peptidase complex, such as Flavourzyme, seems to be required for the production of gluten-free hydrolysates. © 2015 Society of Chemical Industry.
A new diamine oxidase (DAO-1) was discovered recently in the yeast Yarrowia lipolytica PO1f and investigated for its histamine degradation capability under simulated intestinal conditions. DAO-1 was formulated together with catalase as a sucrose-based tablet. The latter (9 × 7 mm; 400 mg) contained 690 nkat of DAO-1 activity, which was obtained from a bioreactor cultivation of a genetically modified Y. lipolytica with optimized downstream processing. The DAO-1 tablet was tested in a histamine bioconversion experiment under simulated intestinal conditions in the presence of food constituents, whereby about 30% of the histamine was degraded in 90 min. This amount might already be sufficient to help people with histamine intolerance. Furthermore, it was found that the stability of DAO-1 in a simulated intestinal fluid is influenced distinctively by the presence of a food matrix, indicating that the amount and type of food consumed affect the oral supplementation with DAO. This study showed for the first time that a microbial DAO could have the potential for the treatment of histamine intolerance by oral supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.