The fragmentation and habitat loss are the main causes of pollinators decline worldwide, however very little is known about the composition and distribution of neotropical pollinators along continuous micro-environments. To fill this gap, we carried out samplings of Euglossini bees in a continuous area of forest with micro-environments of primary (remnant) and secondary (regeneration) forest of Atlantic Forest. We evaluated the differences in the composition and uniformity of orchid bees in different micro-environments, in order to characterize the responses of the local environmental changes in the attraction of bees to chemical traps. Our results indicated that the composition and uniformity were similar between the two forest fragments studied here, although there are greater abundance of some species by micro-environments. We conclude that the characteristics of the sites in a continuous environment with primary and secondary forest do not seem to have an effect on the composition of the Euglossini fauna, and that the chemical substances are complementary in the attractiveness of the orchid bee males. Thus, our findings suggest that micro-environments in a continuous matrix near forest remnants can help to promote the reintegration of the orchid bee communities and contribute to the conservation of areas in process of forest regeneration.
Forest habitats are important sources of food and nesting resources for pollinators, primarily in urban areas and landscapes with intense agricultural activity. The forest fragmentation and environmental changes occurring in these green refuges are known to impose survival challenges to pollinating bees, leading to species loss. However, it is not well known how the species of bees that visit flowers are distributed in forest micro-environments. To fill this gap, we sampled flower visiting bees in a continuous forest matrix with micro-environments of two forest types (mature and regenerating forest). We examined how the local environmental changes and climatic conditions affect the composition and uniformity of bee communities in the different micro-environments. Our results indicated that both abundance and richness were similar between forest types studied here, however climatic conditions and plant flowering patterns affect the composition of bees. Thus, our results demonstrated that the continuous micro-environments can favor floral visits and the reintegration of bee communities, and still, that this strategy can be used to minimize the impacts of environmental changes at local scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.