O Churn, é um termo que se refere a clientes que abandonam uma empresa, este problema é constante no mundo empresarial. Dessa forma se torna necessário o uso de técnicas de análise e tratamento dos dados, para entender e solucionar o processo de Churn numa empresa. A empresa analisada nesta pesquisa foi a Justa, que é uma Fintech brasileira, que proporcionou a base de dados para avaliação e implementação deste estudo. A base disponibilizada contém duas partes: As informações dos clientes em si e as transações deles, nestas foram realizadas etapas de pré-processamento para melhor análise dos dados. Após as etapas de pré-processamento são aplicados técnicas e algoritmos de Machine Learning como: K-means, KNN e Logistic Regression a fim de buscar solucionar o problema de Churn na empresa. Os resultados aqui obtidos mostram que, para o escopo estimado, o projeto consegue dizer se um cliente é churn, com base nas suas transações, mas devido a grande rotatividade de clientes os grupos de clientes analisados não são acentuados e possuem poucos padrões comportamentais. Para uma análise mais elaborada dos perfis de cliente, é necessário obter informações mais detalhadas do cliente, como renda mensal, ocupação, entre outros.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.