International audience We consider the set $\mathcal{L}_n<$ of n-letters long Lyndon words on the alphabet $\mathcal{A}=\{0,1\}$. For a random uniform element ${L_n}$ of the set $\mathcal{L}_n$, the binary tree $\mathfrak{L} (L_n)$ obtained by successive standard factorization of $L_n$ and of the factors produced by these factorization is the $\textit{Lyndon tree}$ of $L_n$. We prove that the height $H_n$ of $\mathfrak{L} (L_n)$ satisfies $\lim \limits_n \frac{H_n}{\mathsf{ln}n}=\Delta$, in which the constant $\Delta$ is solution of an equation involving large deviation rate functions related to the asymptotics of Eulerian numbers ($\Delta ≃5.092\dots $). The convergence is the convergence in probability of random variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.