The objective of this study was to evaluate the effect of steak location and postmortem aging on cooked meat tenderness and myofibrillar protein degradation of steaks from M. semitendinosus (ST). Following harvest and a 6 d chill period, the left ST was removed from carcasses of crossbred feedlot steers ( = 60, average hot carcass weight 427 ± 24 kg). Each ST was fabricated into ten 2.54-cm thick steaks originating from the proximal to distal end of the muscle. Steaks cut adjacent to each other were paired, vacuum packaged, and randomly assigned to 7, 14, 21, 42, or 70 d of aging at 2 ± 1°C. After aging, within each steak pair, steaks were randomly assigned to Warner-Bratzler shear force or myofibrillar proteolysis analysis (calpain activity and desmin and troponin-T degradation). Muscle fiber type and size were also determined at the 2 ends of the muscle. There was no location × d of aging interaction ( = 0.25) for ST steak WBSF. Steak location affected (quadratic, < 0.01) WBSF. As steaks were fabricated from the proximal to distal end, WBSF values decreased toward the middle of the muscle and then increased toward the distal end. Activity of all calpains and myofibrillar protein proteolysis were unaffected by steak location ( > 0.13). Type I, IIA, and IIX muscle fibers were larger at the proximal end of the muscle than the distal end ( < 0.01). Increasing d of aging improved WBSF (quadratic, < 0.01) for the duration of the 70 d postmortem period. As d of aging increased, intact calpain-1 activity decreased (quadratic, < 0.01) with activity detected through 42 d. Day of aging affected autolyzed calpain-1 (linear, < 0.01) and calpain-2 activity (quadratic, < 0.01). Through d 70 of aging, the intensity of intact 55 kDa desmin band decreased (linear, < 0.01), while there was an increase (linear, < 0.01) in the degraded 38 kDa band. Similarly, d of aging increased troponin-T proteolysis, indicated by a decrease (quadratic, < 0.01) in intensity of the intact 40 kDa band and an increase (linear, < 0.01) in the 30 kDa degraded band. Intramuscular WBSF differences are not due to proteolytic activity or myofibrillar degradation and seem related to muscle fiber size. The improvement of ST steak WBSF through 70 d of aging is partly due to continued degradation of desmin and troponin-T. Calpain proteolytic analysis indicates that autolyzed calpain-1 and calpain-2 may be involved in extended postmortem myofibrillar protein proteolysis.
Severe stress exposure is a global problem with long-lasting negative behavioral and physiological consequences, which increases the risk of stress-related disorders such as major depressive disorder (MDD). An essential characteristic of MDD is the impairment of social functioning and lack of social motivation. Chronic social defeat stress is an established animal model for MDD research, which induces a cascade of physiological and social behavioral changes. The current developments of markerless pose estimation tools allow for more complex and socially relevant behavioral tests, but the application of these tools to social behavior remains to be explored. Here, we introduce the open-source tool DeepOF to investigate the individual and social behavioral profile in mice by providing supervised and unsupervised pipelines using DeepLabCut-annotated pose estimation data. The supervised pipeline relies on pre-trained classifiers to detect defined traits for both single and dyadic animal behaviors. Subsequently, the unsupervised pipeline explores the behavioral repertoire of the animals without label priming, which has the potential of pointing towards previously unrecognized motion motifs that are systematically different across conditions. We here provide evidence that the DeepOF supervised and unsupervised pipelines detect a distinct stress-induced social behavioral pattern, which was particularly observed at the beginning of a novel social encounter. The stress-induced social behavior shows a state of arousal that fades with time due to habituation. In addition, while the classical social avoidance task does identify the stress-induced social behavioral differences, both DeepOF behavioral pipelines provide a clearer and more detailed profile. DeepOF aims to facilitate reproducibility and unification of behavioral classification of social behavior by providing an open-source tool, which can significantly advance the study of rodent individual and social behavior, thereby enabling novel biological insights and subsequent drug development for psychiatric disorders.
Purpose Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. Methods We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic DNA from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. Results We found variants classified as pathogenic, likely pathogenic or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2 and HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). Conclusion In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.
Severe stress exposure increases the risk of stress-related disorders such as major depressive disorder (MDD). An essential characteristic of MDD is the impairment of social functioning and lack of social motivation. Chronic social defeat stress is an established animal model for MDD research, which induces a cascade of physiological and behavioral changes. Current markerless pose estimation tools allow for more complex and naturalistic behavioral tests. Here, we introduce the open-source tool DeepOF to investigate the individual and social behavioral profile in mice by providing supervised and unsupervised pipelines using DeepLabCut-annotated pose estimation data. Applying this tool to chronic social defeat in male mice, the DeepOF supervised and unsupervised pipelines detect a distinct stress-induced social behavioral pattern, which was particularly observed at the beginning of a novel social encounter and fades with time due to habituation. In addition, while the classical social avoidance task does identify the stress-induced social behavioral differences, both DeepOF behavioral pipelines provide a clearer and more detailed profile. Moreover, DeepOF aims to facilitate reproducibility and unification of behavioral classification by providing an open-source tool, which can advance the study of rodent individual and social behavior, thereby enabling biological insights and, for example, subsequent drug development for psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.