This paper presents an overview of recovery models and algorithms for real-time railway disturbance and disruption management. This area is currently an active research area in Operations Research, including real-time timetable rescheduling and real-time rescheduling of the rolling stock and crew duties. These topics are addressed in this paper. Also research dealing with the integration of more than one rescheduling phase is discussed. Currently, the developed methods have been tested mainly in an experimental setting, thereby showing promising results, both in terms of their solution quality and in terms of their computation times. The application of these models and algorithms in real-life railway systems will be instrumental for increasing the quality of the provided railway services, leading to an increased utilization of the involved railway systems.
On a daily basis, relatively large disruptions require infrastructure managers and railway operators to reschedule their railway timetables together with their rolling stock and crew schedules. This research focuses on timetable rescheduling for passenger trains at a macroscopic level in a railway network. An integer programming model is formulated for solving the timetable rescheduling problem, which minimizes the number of cancelled and delayed trains while adhering to infrastructure and rolling stock capacity constraints. The possibility of rerouting trains in order to reduce the number of cancelled and delayed trains is also considered. In addition, all stages of the disruption management process (from the start of the disruption to the time the normal situation is restored) are taken into account. Computational tests of the described model on a heavily used part of the Dutch railway network show that we are able to find optimal solutions in short computation times. This makes the approach applicable for use in practice. 1
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.