This work aims to optimize the recovery of methyl methacrylate (MMA) by depolymerization of polymethyl methacrylate (PMMA) dental resins fragments/residues. In order to pilot the experiments at technical scale, the PMMA dental resins scraps were submitted by thermogravimetric analysis (TG/DTG/DTA). The experiments were conducted at 345, 405, and 420 °C, atmospheric pressure, using a pilot scale reactor of 143 L. The liquid phase products obtained at 420 °C, atmospheric pressure, were subjected to fractional distillation using a pilot scale column at 105 °C. The physicochemical properties (density, kinematic viscosity, and refractive index) of reaction liquid products, obtained at 345 °C, atmospheric pressure, were determined experimentally. The compositional analysis of reaction liquid products at 345 °C, 30, 40, 50, 60, 70, 80, and 110 min, at 405 °C, 50, 70, and 130 min, and at 420 °C, 40, 50, 80, 100, 110, and 130 min were determined by GC-MS. The morphology of PMMA dental resins fragments before and after depolymerization was performed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The experiments show that liquid phase yields were 55.50%, 48.73%, and 48.20% (wt.), at 345, 405, and 420 °C, respectively, showing a first order exponential decay behavior, decreasing with increasing temperature, while that of gas phase were 31.69%, 36.60%, and 40.13% (wt.), respectively, showing a first order exponential growth, increasing with temperature. By comparing the density, kinematic viscosity, and refractive index of pure MMA at 20 °C with those of liquid reaction products after distillation, one may compute percent errors of 1.41, 2.83, and 0.14%, respectively. SEM analysis showed that all the polymeric material was carbonized. Oxygenated compounds including esters of carboxylic acids, alcohols, ketones, and aromatics were detected by gas chromatography/mass spectrometry (GC-MS) in the liquid products at 345, 405, and 420 °C, atmosphere pressure. By the depolymerization of PMMA dental resins scraps, concentrations of methyl methacrylate between 83.454 and 98.975% (area.) were achieved. For all the depolymerization experiments, liquid phases with MMA purities above 98% (area.) were obtained between the time interval of 30 and 80 min. However, after 100 min, a sharp decline in the concentrations of methyl methacrylate in the liquid phase was observed. The optimum operating conditions to achieve high MMA concentrations, as well as elevated yields of liquid reaction products were 345 °C and 80 min.
Catalytic upgrading of vapors from pyrolysis of triglycerides materials is a promising approach to achieve better conversions of hydrocarbons and production of liquid biofuels. Catalytic cracking often shows incomplete conversion due to distillation of initial reaction products and the addition of a second catalytic reactor, whereas pyrolytic vapors are made in contact to a solid catalyst was applied to improve the physical-chemical properties and quality of bio-oil. This work investigated the effect of catalyst content and reaction time by catalytic upgrading from pyrolysis vapors of residual fat at 450 °C and 1.0 atmosphere, on the yields of reaction products, physicochemical properties (density, kinematic viscosity, refractive index, and acid value), and chemical composition of organic liquid products (OLP), over a catalyst fixed bed reactor, in semi pilot scale. Pellets of red mud chemically activated with 1.0 M HCl were used as catalysts. The thermal catalytic cracking of residual fat show OLP yields from 54.4 to 84.88 (wt.%), aqueous phase yields between 2.21 and 2.80 (wt.%), solid phase yields (coke) between 1.30 and 8.60 (wt.%), and gas yields from 11.61 to 34.22 (wt.%). The yields of OLP increases with catalyst content while those of aqueous, gaseous and solid phase decreases. For all experiments, the density, kinematic viscosity, and acid value of OLP decreases with reaction time. The GC-MS of liquid reaction products identified the presence of hydrocarbons and oxygenates. In addition, the hydrocarbon content in OLP increases with reaction time, while those of oxygenates decrease, reaching concentrations of hydrocarbons up to 95.35% (area.). The best results for the physicochemical properties and the maximum hydrocarbon content in OLP were obtained at 450 °C and 1.0 atmosphere, using a catalyst fixed bed reactor, with 5.0% (wt.) red mud pellets activated with 1.0 M HCl as catalyst.
This work aims to investigate the effect of process temperature and catalyst content by pyrolysis and thermal catalytic cracking of (organic matter + paper) fraction from municipal household solid waste (MHSW) on the yields of reaction products (bio-oil, bio-char, H2O, and gas), acid value and chemical composition of bio-oils, and characterization of bio-chars, in laboratory scale. The collecting sectors of MHSW in the municipality of Belém-Pará-Brazil were chosen based on geographic and socio-economic database. The MHSW collected and transported to the segregation area. The gravimetric analysis of MHSW carried out and the fractions (Paper, Cardboard, Tetra Pack, Hard Plastic, Soft Plastic, Metal, Glass, Organic Matter, and Inert) separated. The selected organic matter and paper submitted to pre-treatment of crushing, drying, and sieving. The experiments carried out at 400, 450, and 475 °C and 1.0 atmosphere, and at 475 °C and 1.0 atmosphere, using 5.0, 10.0, and 15.0% (wt.) Ca(OH)2, in batch mode. The bio-oil characterized for acid value. The chemical functions present in bio-oil identified by FT-IR and the composition by GC-MS. The bio-char characterized by SEM, FT-IR and XRD. The variance in mass (wt.%) for organic fraction of municipal household solid waste, between 56.21 and 67.45% (wt.), lies with the interval of 56% (wt.) and 64% (wt.) of OFMHSW for middle and low income countries. The pyrolysis of MHSW fraction (organic matter + paper) show bio-oil yields between 2.63 and 9.41% (wt.), aqueous phase yields between 28.58 and 35.08% (wt.), solid phase yields between 35.29 and 45.75% (wt.), and gas yields between 16.54 and 26.72% (wt.). The bio-oil yield increases with pyrolysis temperature. For the catalytic cracking, the bio-oil and gas yields increase slightly with CaO content, while that of bio-char decreases, and the H2O phase remains constant. The GC-MS of liquid reaction products identified the presence of hydrocarbons (alkanes, alkenes, alkynes, cycloalkanes, and aromatics) and oxygenates (carboxylic acids, ketones, esters, alcohols, phenols, and aldehydes), as well as compounds containing nitrogen, including amides and amines. The acidity of bio-oil decreases with increasing process temperature and with aid Ca(OH)2 as catalyst. The concentration of hydrocarbons in bio-oil increases with increasing Ca(OH)2-to-MHSW fraction ratio due to the catalytic deoxygenation of fatty acids molecules, by means of de-carboxylation/de-carbonylation, producing aliphatic and aromatic hydrocarbons.
In this work, a techno-economic assessment of the production of bio-oil, coke and gas, via thermo-catalytic pyrolysis followed by distillation, is accomplished. The raw materials were two solid wastes: lipid-based material (residual fat/scum from a fat retention box from the University Restaurant at the Federal University of Pará—UFPA) and a lignin-cellulosic material of açaí seed (Euterpe oleracea Mart.). From the literature, a review is made of the physicochemical analysis of the raw materials, of the bio-oil, and of the chemical composition of the biofuels produced (kerosene, light diesel, and heavy diesel). The bio-oil yields for each experiment of pyrolysis and distillation are also presented and compared with the literature. The economic indicators for the evaluation of the most viable cracking (pyrolysis) and distillation process of bio-oils were: (a) the simple payback criterion, (b) discounted payback, (c) net present value (NPV), (d) internal rate of return (IRR), and (e) index of profitability (IP). The analysis of the indicators showed the economic viability of the lipid-based material and unfeasibility for the açai seed (Euterpe oleracea Mart.). The breakeven point obtained was 1.28 USD/L and the minimum fuel selling price (MFSP) obtained in this work for the biofuels was 1.34 USD/L). The sensibility analysis demonstrated that the pyrolysis and distillation yields are the most important variables to affect the minimum fuel selling price (MFSP).
In this study, we investigated the acid (HCl) and alkali (KOH) chemical activation of açaí seeds (Euterpe Oleraceae, Mart.) pre-treatment before pyrolysis at temperatures of 350–450 °C in order to assess how reactions proceed when affected by temperature. Chemical composition of bio-oil and aqueous phase were determined by GC-MS and FT-IR. The bio-char is characterized by XRD. For the activation with KOH, the XRD analysis identified the presence of Kalicinite (KHCO3), the dominant crystalline phase in bio-char, while an amorphous phase was identified in bio-chars for the activation with HCl. The experiments have shown that bio-oil yield increases with temperature for the KOH activated biomass and decreases for the acid activated one. The KOH bio-oil is primarily composed of alcohols and ketones, showing the lowest acid values when compared with the HCl one, which is composed mainly of carboxylic acids and phenols. An increase in alcohol content and a decrease in ketones in the KOH bio-oil with temperature suggests conversion reactions between these two functions. For HCl bio-oil, carboxylic acid concentration increases with temperature while phenols decrease. For production of hydrocarbons, KOH activated biomass pyrolysis is better than acid-activated one, since no hydrocarbons were produced for HCl bio-oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.