There is not a specific test to diagnose Alzheimer's disease (AD). Its diagnosis should be based upon clinical history, neuropsychological and laboratory tests, neuroimaging and electroencephalography (EEG). Therefore, new approaches are necessary to enable earlier and more accurate diagnosis and to follow treatment results. In this study we used a Machine Learning (ML) technique, named Support Vector Machine (SVM), to search patterns in EEG epochs to differentiate AD patients from controls. As a result, we developed a quantitative EEG (qEEG) processing method for automatic differentiation of patients with AD from normal individuals, as a complement to the diagnosis of probable dementia. We studied EEGs from 19 normal subjects (14 females/5 males, mean age 71.6 years) and 16 probable mild to moderate symptoms AD patients (14 females/2 males, mean age 73.4 years. The results obtained from analysis of EEG epochs were accuracy 79.9% and sensitivity 83.2%. The analysis considering the diagnosis of each individual patient reached 87.0% accuracy and 91.7% sensitivity.
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
Background: Affective neurofeedback constitutes a suitable approach to control abnormal neural activities associated with psychiatric disorders and might consequently relief symptom severity. However, different aspects of neurofeedback remain unclear, such as its neural basis, the performance variation, the feedback effect, among others. Aim: First, we aimed to propose a functional near-infrared spectroscopy (fNIRS)-based affective neurofeedback based on the self-regulation of frontal and occipital networks. Second, we evaluated three different feedback approaches on performance: real, fixed, and random feedback. Third, we investigated different demographic, psychological, and physiological predictors of performance. Approach: Thirty-three healthy participants performed a task whereby an amorphous figure changed its shape according to the elicited affect (positive or neutral). During the task, the participants randomly received three different feedback approaches: real feedback, with no change of the classifier output; fixed feedback, keeping the feedback figure unmodified; and random feedback, where the classifier output was multiplied by an arbitrary value, causing a feedback different than expected by the subject. Then, we applied a multivariate comparison of the whole-connectivity profiles according to the affective states and feedback approaches, as well as during a pretask resting-state block, to predict performance. Results: Participants were able to control this feedback system with 70.00% AE 24.43% (p < 0.01) of performance during the real feedback trials. No significant differences were found when comparing the average performances of the feedback approaches. However, the whole functional connectivity profiles presented significant Mahalanobis distances (p ≪ 0.001) when comparing both affective states and all feedback approaches. Finally, task performance was positively correlated to the pretask resting-state whole functional connectivity (r ¼ 0.512, p ¼ 0.009). Conclusions: Our results suggest that fNIRS might be a feasible tool to develop a neurofeedback system based on the self-regulation of affective networks. This finding enables future investigations using an fNIRS-based affective neurofeedback in psychiatric populations. Furthermore, functional connectivity profiles proved to be a good predictor of performance and suggested an increased effort to maintain task control in the presence of feedback distractors.
Major depressive disorder (MDD) is the leading cause of disability worldwide. Neurofeedback training has been suggested as a potential additional treatment option for MDD patients not reaching remission from standard care (i.e., psychopharmacology and psychotherapy). Here we systematically reviewed neurofeedback studies employing electroencephalography, or functional magnetic resonance-based protocols in depressive patients. Of 585 initially screened studies, 24 were included in our final sample (N=480 patients in experimental and N=194 in the control groups completing the primary endpoint). We evaluated the clinical efficacy across studies and explored its relationship with the number of sessions as a potential proxy for a dose-effect response. We also attempted to group studies according to the control condition categories currently used in the field that affect clinical outcomes in group comparisons. In most studies, MDD patients showed symptom improvement superior to the control group(s). However, most articles did not comply with the most stringent study quality and reporting practices. We conclude with recommendations on best practices for experimental designs and reporting standards for neurofeedback training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.