Tiny water drops produced from bubble bursting play a critical role in forming clouds, scattering sunlight, and transporting pathogens from water to the air. Bubbles burst by nucleating a hole at their cap foot and may produce jets or film drops. The latter originate from the fragmentation of liquid ligaments formed by the centripetal destabilization of the opening hole rim. They constitute a major fraction of the aerosols produced from bubbles with cap radius of curvature (R) > ∼0.4 × capillary length (a). However, our present understanding of the corresponding mechanisms does not explain the production of most submicron film drops, which represent the main number fraction of sea spray aerosols. In this study, we report observations showing that bursting bubbles with R < ∼0.4a are actually mainly responsible for submicron film drop production, through a mechanism involving the flapping shear instability of the cap with the outer environment. With this proposed pathway, the complex relations between bubble size and number of drops produced per bubble can be better explained, providing a fundamental framework for understanding the production flux of aerosols and the transfer of substances mediated by bubble bursting through the air–water interface and the sensitivity of the process to the nature of the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.