Environmental problems related to the generation of wastewater contaminated with organic compounds and the emissions of pollutants from fuel burning have become major global problems. Thus, there is a need for the development of alternative and economically viable technologies for the remediation of the affected ecosystems. Therefore, this work describes the preparation and characterization of a Ti(OH)4 catalyst with the modified surface for application in the photodegradation of organic compounds (methylene blue (MB) dye and the drug amiloride (AML)) and in the artificial photosynthesis process. Characterization results reveal that peroxo groups on the surface of the catalyst had a great influence on the optical properties of the Ti(OH)4 and consequently in its photocatalytic property. This catalyst showed a high photocatalytic activity for the degradation of organic pollutants under visible radiation, reaching approximately 98% removal of both the dye and the drug in 150 min of reaction. In addition, the catalyst presented a great potential for the reduction of CO2 under ultraviolet (UV) radiation when compared to P25, which is a classic catalyst used in photocatalytic processes. The highest photocatalytic activity can be attributed to the strong visible light absorption, due to the narrow band gap, and the effective separation of photogenerated electron-hole pairs caused by the peroxo groups on the Ti(OH)4 surface.
The
insertion of nanoparticles into smart hydrogels can diversify
their functionalities by a synergistic combination of the components
properties within the hydrogels. While these hybrid systems are attractive
to the biomaterials field, careful design and control of their properties
are required since the new interactions between the polymer and the
nanoparticles can result in changes or the loss of hydrogels stimuli
response. In order to understand the physicochemical aspects of the
thermoresponsive systems, nanocomposites of poly(N-vinylcaprolactam) (PNVCL) and silica nanoparticles with different
sizes and concentrations were synthesized. The UV–vis and DLS
techniques showed that the PNVCL has a sharp phase transition at 34
°C, while the nanocomposites have a diffuse transition. The nanocomposites
showed an initial coil–globule transition before the phase
transition takes place. This was identified by the evolution of the
hydrodynamic diameter of the nanocomposite globules before the cloud
point temperature (T
cp), which remained
constant for PNVCL. This new transition profile can be described by
two stages in which microscopic volume transitions occur first, followed
by the macroscopic transition that forms the hydrogel. These results
show that the proposed nanocomposites can be designed to have tunable
stimuli response to smaller temperature variations with the formation
of intermediate globule states.
This study aimed to evaluate the cytotoxicity and microbiological properties of poly (N-vinylcaprolactam)—PNVCL hydrogels containing flavonoids as intracanal medication for endodontic therapy. Antimicrobial activity of ampelopsin (AMP), isoquercitrin and rutin was determined against Enterococcus faecalis, Actinomyces israelii, Lactobacillus casei, Streptococcus mutans, and Fusobacterium nucleatum by the microdilution method. After synthesis and characterization by rheology, PNVCL hydrogels were loaded with AMP and controls calcium hydroxide (CH) and chlorhexidine (CHX), and determined the compounds release profile. PNVCL+AMP, PNVCL+CH, PNVCL+CHX were evaluated on multi-species biofilms and analyzed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Cytotoxicity was determined after fibroblasts exposure to serial dilutions of AMP and PNVCL hydrogel extracts. AMP was effective against all of the bacteria tested, especially against S. mutans, A. israelli and F. nucleatum. SEM and CLSM analysis showed that PNVCL + AMP caused a significant decrease and disorganization of multi-species biofilms and reduction of intracanal viable cells, superior to the other groups. AMP affected fibroblast viability at concentrations above 0.125 mg/mL, and extracts of PNVCL+AMP showed low cytotoxicity. In conclusion, PNVCL containing AMP demonstrated cytocompatibility and potent effect against multi-species biofilms and could be potential intracanal medication for endodontic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.