Melatonin is highly produced in the placenta where it protects against molecular damage and cellular dysfunction arising from hypoxia/re-oxygenation-induced oxidative stress as observed in primary cultures of syncytiotrophoblast. However, little is known about melatonin and its receptors in the human placenta throughout pregnancy and their role in villous trophoblast development. The purpose of this study was to determine melatonin-synthesizing enzymes, arylalkylamine N-acetyltransferase (AANAT) and hydroxyindole O-methyltransferase (HIOMT), and melatonin receptors (MT1 and MT2) expression throughout pregnancy as well as the role of melatonin and its receptors in villous trophoblast syncytialization. Our data show that the melatonin generating system is expressed throughout pregnancy (from week 7 to term) in placental tissues. AANAT and HIOMT show maximal expression at the 3rd trimester of pregnancy. MT1 receptor expression is maximal at the 1st trimester compared to the 2nd and 3rd trimesters, while MT2 receptor expression does not change significantly during pregnancy. Moreover, during primary villous cytotrophoblast syncytialization, MT1 receptor expression increases, while MT2 receptor expression decreases. Treatment of primary villous cytotrophoblast with an increasing concentration of melatonin (10 pM-1 mM) increases the fusion index (syncytium formation; 21% augmentation at 1 mM melatonin vs. vehicle) and β-hCG secretion (121% augmentation at 1 mM melatonin vs. vehicle). This effect of melatonin appears to be mediated via its MT1 and MT2 receptors. In sum, melatonin machinery (synthetizing enzymes and receptors) is expressed in human placenta throughout pregnancy and promotes syncytium formation, suggesting an essential role of this indolamine in placental function and pregnancy well-being.
the syncytiotrophoblast is a multinucleated layer that plays a critical role in regulating functions of the human placenta during pregnancy. Maintaining the syncytiotrophoblast layer relies on ongoing fusion of mononuclear cytotrophoblasts throughout pregnancy, and errors in this fusion process are associated with complications such as preeclampsia. While biochemical factors are known to drive fusion, the role of disease-specific extracellular biophysical cues remains undefined. Since substrate mechanics play a crucial role in several diseases, and preeclampsia is associated with placental stiffening, we hypothesize that trophoblast fusion is mechanically regulated by substrate stiffness. We developed stiffness-tunable polyacrylamide substrate formulations that match the linear elasticity of placental tissue in normal and disease conditions, and evaluated trophoblast morphology, fusion, and function on these surfaces. our results demonstrate that morphology, fusion, and hormone release is mechanically-regulated via myosin-ii; optimal on substrates that match healthy placental tissue stiffness; and dysregulated on disease-like and supraphysiologically-stiff substrates. We further demonstrate that stiff regions in heterogeneous substrates provide dominant physical cues that inhibit fusion, suggesting that even focal tissue stiffening limits widespread trophoblast fusion and tissue function. These results confirm that mechanical microenvironmental cues influence fusion in the placenta, provide critical information needed to engineer better in vitro models for placental disease, and may ultimately be used to develop novel mechanically-mediated therapeutic strategies to resolve fusion-related disorders during pregnancy. The human placental barrier is responsible for several critical functions during pregnancy including nutrient transport, gas exchange, waste elimination and hormone secretion 1. The placenta hence directly impacts fetal development 2 , immune tolerance 3 , and gestational length 4 , each of which can profoundly affect long-term quality of life and healthcare economics for both mother and baby 5-8. Transport across this fetal-maternal interface is regulated by the syncytiotrophoblast, a multinucleated layer that forms the outer surface of the placental villi 9. The syncytiotrophoblast arises and is maintained by continuous fusion of mononuclear villous cytotrophoblasts (vCTBs) 10 , through a tightly regulated process that can only be partially recreated in vitro 11. Disruption of fusion results in placental malformation and aberrant villous trophoblast turnover 10 , which is associated with life-altering pregnancy complications such as preeclampsia 12 and intrauterine growth restriction 13. Several biochemical factors are known to regulate placental trophoblast fusion in vitro and in vivo, including growth factors 14-16 , hormones 17 , proteases 18-20 , transcription factors 21 and membrane proteins 22. Despite this wealth of information, fusion remains a stochastic and poorly controlled process in cult...
Melatonin has been proposed as a possible treatment for the deleterious effects of hypoxia/reoxygenation (H/R), such as autophagy, inflammation, and apoptosis. Pathological pregnancies, such as preeclampsia, are associated with placental H/R, and decreased placental melatonin synthesis as well as lower melatonin levels in the placenta and maternal plasma. However, the effects of exogenous melatonin on inflammation and autophagy induced by pregnancy complications associated with H/R await investigation. This study aimed to determine as to whether melatonin protects human primary villous trophoblasts against H/R-induced autophagy, inflammation, and apoptosis. Human primary villous cytotrophoblasts were isolated and immunopurified from normal term placentas. These cells were then exposed or not to 1 mmol/L melatonin for 72 hour in normoxia (8% O ), thereby inducing differentiation into syncytiotrophoblast that was then exposed to H/R (0.5% O , for 4 hour) or normoxia. H/R decreased endogenous melatonin synthesis (by 68%) and interleukin (IL)-10 levels (by 72%), coupled to increased tumor necrosis factor (TNF) (by 114%), IL-6 (by 55%), and NFκB (by 399%), compared to normoxia. Melatonin treatment reversed the H/R effect, restoring IL-10, TNF, and IL-6 levels to those of the normoxia condition. Melatonin, as well as NFκB inhibition, enhanced autophagy activation, consequently increasing syncytiotrophoblast survival in H/R conditions. This study suggests that H/R, which is present in pregnancy complications, inhibits endogenous melatonin production, thereby contributing to reduced syncytiotrophoblast viability. Results indicate that exogenous melatonin treatment may afford protection against H/R-induced damage, thereby enhancing placental cell survival, and contributing to improved fetal outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.