In this work, with focus on the energy transport properties in quantum, low dimensional, graded materials, we address the investigation of the energy (and spin) current in XXZ open chains with graded inner structures and driven out of equilibrium by magnetization pumping applied at the ends. We study several types of graded structures in different situations in order to show a ubiquitous occurrence of energy rectification, even for the system under a homogeneous magnetic field. Due to technical difficulties, we carry out the computation for small chains, but we present arguments which indicate the extension of some results to larger systems. Recalling the generic existence of energy rectification in classical, graded materials, which are described by anharmonic chains of oscillators, and recalling also the anharmonicity of these XXZ models, which involve quartic terms in more transparent representation in terms of fermionic creation and annihilation operators, we may say that our results extend the ubiquity of energy rectification occurrence in classical graded materials to the case of quantum systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.