Accurate knowledge of knee kinematics is important for a better understanding of normal joint function and for improving patient outcomes subsequent to joint reconstructive surgery. Limited information is available that accurately describes the relative movements of the bones at the knee in vivo, even for the most common of all activities: walking. We used a mobile X‐ray imaging system to measure the three‐dimensional motion of the entire knee‐joint complex—femur, tibia, and patella—when humans walk over ground at their natural speeds. Data were recorded from 15 healthy individuals (9 males, 6 females; age 30.5 ± 6.2 years). The most pronounced rotational motion of the tibia was flexion‐extension followed by internal‐external rotation and abduction‐adduction (peak‐to‐peak displacements: 70.7°, 9.2°, and 1.9°, respectively). Maximum anterior translation of the tibia was 6.5 mm and occurred in early swing, coinciding with peak knee flexion and peak internal rotation. The most prominent rotational motion of the patella was flexion‐extension (peak‐to‐peak displacement: 50.5°). The tibia pivoted about the medial compartment of the tibiofemoral joint, conferring greater movements of the contact centers in the lateral compartment than the medial compartment (15.4 and 9.7 mm, respectively). Internal‐external rotation, anterior‐posterior translation and medial‐lateral shift of the tibia as well as flexion‐extension and anterior‐posterior translation of the patella were each coupled to the knee flexion angle, as were movements of the contact centers at each joint. These fundamental data serve as a valuable resource for evaluating knee joint function in normal and pathological gait. The data are available in Supplementary_Material_Data.xlsx. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
Patellofemoral pain is a disabling, highly prevalent pathology. Altered patellofemoral contact forces are theorized to contribute to this pain. Musculoskeletal modeling has been employed to better understand the etiology of patellofemoral pain. Currently, there are no data on the effective quadriceps moment arm for individuals with patellofemoral pain, forcing researchers to apply normative values when modeling such individuals. In addition, the ratio of patellofemoral reaction force to quadriceps force is often used as a surrogate for patellofemoral joint contact force, ignoring the fact that the quadriceps efficiency can vary with pathology and intervention. Thus, the purposes of this study were to: (1) quantify the effective quadriceps moment arm in individuals with patellofemoral pain and compare this value to a control cohort and (2) develop a novel methodology for quantifying the normalized patellofemoral joint reaction force in vivo during dynamic activities. Dynamic MR data were captured as subjects with patellofemoral pain (30F/3M) cyclically flexed their knee from 10° to 40°. Data for control subjects (29F/9M) were taken from a previous study. The moment arm data acquired across a large cohort of individuals with patellofemoral pain should help advance musculoskeletal modeling. The primary finding of this study was an increased mean normalized patellofemoral reaction force of 14.9% (maximum values at a knee angle of 10°) in individuals with patellofemoral pain. Understanding changes in the normalized patellofemoral reaction force with pathology may lead to improvements in clinical decision making, and consequently treatments, by providing a more direct measure of altered patellofemoral joint forces.
We combined mobile biplane X‐ray imaging and magnetic resonance imaging to measure the regions of articular cartilage contact and cartilage thickness at the tibiofemoral and patellofemoral joints during six functional activities: standing, level walking, downhill walking, stair ascent, stair descent, and open‐chain (non‐weight‐bearing) knee flexion. The contact centers traced similar paths on the medial and lateral femoral condyles, femoral trochlea, and patellar facet in all activities while their locations on the tibial plateau were more varied. The translations of the contact centers on the femur and patella were tightly coupled to the tibiofemoral flexion angle in all activities (r2 > 0.95) whereas those on the tibia were only moderately related to the flexion angle (r2 > 0.62). The regions of contacting cartilage were significantly thicker than the regions of non‐contacting cartilage on the patella, femoral trochlea, and the medial and lateral tibial plateaus in all activities (p < 0.001). There were no significant differences in thickness between contacting and non‐contacting cartilage on the medial and lateral femoral condyles in all activities, except open‐chain knee flexion. Our results provide partial support for the proposition that cartilage thickness is adapted to joint load and do not exclude the possibility that other factors, such as joint congruence, also play a role in regulating the structure and organization of healthy cartilage. The data obtained in this study may serve as a guide when evaluating articular contact motion in osteoarthritic and reconstructed knees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.