In this study, we chose 17 worldwide sheep populations of eight breeds, which were intensively selected for different purposes (meat, milk, or wool), or locally-adapted breeds, in order to identify and characterize factors impacting the detection of runs of homozygosity (ROH) and heterozygosity-rich regions (HRRs) in sheep. We also applied a business intelligence (BI) tool to integrate and visualize outputs from complementary analyses. We observed a prevalence of short ROH, and a clear distinction between the ROH profiles across populations. The visualizations showed a fragmentation of medium and long ROH segments. Furthermore, we tested different scenarios for the detection of HRR and evaluated the impact of the detection parameters used. Our findings suggest that HRRs are small and frequent in the sheep genome; however, further studies with higher density SNP chips and different detection methods are suggested for future research. We also defined ROH and HRR islands and identified common regions across the populations, where genes related to a variety of traits were reported, such as body size, muscle development, and brain functions. These results indicate that such regions are associated with many traits, and thus were under selective pressure in sheep breeds raised for different purposes. Interestingly, many candidate genes detected within the HRR islands were associated with brain integrity. We also observed a strong association of high linkage disequilibrium pattern with ROH compared with HRR, despite the fact that many regions in linkage disequilibrium were not located in ROH regions.
This study focused on assessing the usefulness of using audio signal processing in the gaited horse industry. A total of 196 short-time audio files (4 s) were collected from video recordings of Brazilian gaited horses. These files were converted into waveform signals (196 samples by 80,000 columns) and divided into training (N = 164) and validation (N = 32) datasets. Twelve single-valued audio features were initially extracted to summarize the training data according to the gait patterns (Marcha Batida—MB and Marcha Picada—MP). After preliminary analyses, high-dimensional arrays of the Mel Frequency Cepstral Coefficients (MFCC), Onset Strength (OS), and Tempogram (TEMP) were extracted and used as input information in the classification algorithms. A principal component analysis (PCA) was performed using the 12 single-valued features set and each audio-feature dataset—AFD (MFCC, OS, and TEMP) for prior data visualization. Machine learning (random forest, RF; support vector machine, SVM) and deep learning (multilayer perceptron neural networks, MLP; convolution neural networks, CNN) algorithms were used to classify the gait types. A five-fold cross-validation scheme with 10 repetitions was employed for assessing the models' predictive performance. The classification performance across models and AFD was also validated with independent observations. The models and AFD were compared based on the classification accuracy (ACC), specificity (SPEC), sensitivity (SEN), and area under the curve (AUC). In the logistic regression analysis, five out of the 12 audio features extracted were significant (p < 0.05) between the gait types. ACC averages ranged from 0.806 to 0.932 for MFCC, from 0.758 to 0.948 for OS and, from 0.936 to 0.968 for TEMP. Overall, the TEMP dataset provided the best classification accuracies for all models. The most suitable method for audio-based horse gait pattern classification was CNN. Both cross and independent validation schemes confirmed that high values of ACC, SPEC, SEN, and AUC are expected for yet-to-be-observed labels, except for MFCC-based models, in which clear overfitting was observed. Using audio-generated data for describing gait phenotypes in Brazilian horses is a promising approach, as the two gait patterns were correctly distinguished. The highest classification performance was achieved by combining CNN and the rhythmic-descriptive AFD.
The Brazilian gaited horse industry is growing steadily, even after a recession period that affected different economic sectors in the whole country. Recent numbers suggested an increase on the exports, which reveals the relevance of this horse market segment. Horses are classified according to the gait criteria, which divide the horses in two groups associated with the animal movements: lateral (Marcha Picada) or diagonal (Marcha_Batida). These two gait groups usually show remarkable differences related to speed and number of steps per fixed unit of time, among other factors. Audio retrieval refers to the process of information extraction obtained from audio signals. This new data analysis area, in comparison to traditional methods to evaluate and classify gait types (as, for example, human subjective evaluation and video monitoring), provides a potential method to collect phenotypes in a reduced cost manner. Audio files (n = 80) were obtained after extracting audio features from freely available YouTube videos. Videos were manually labeled according to the two gait groups (Marcha Picada or Marcha Batida) and thirty animals were used after a quality control filter step. This study aimed to investigate different metrics associated with audio signal processing, in order to first cluster animals according to the gait type and subsequently include additional traits that could be useful to improve accuracy during the identification of genetically superior animals. Twenty-eight metrics, based on frequency or physical audio aspects, were carried out individually or in groups of relative importance to perform Principal Component Analysis (PCA), as well as to describe the two gait types. The PCA results indicated that over 87% of the animals were correctly clustered. Challenges regarding environmental interferences and noises must be further investigated. These first findings suggest that audio information retrieval could potentially be implemented in animal breeding programs, aiming to improve horse gait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.