Two
new ring-size-varying analogues (2 and 3) of ipomoeassin F were synthesized and evaluated. Improved cytotoxicity
(IC50: from 1.8 nM) and in vitro protein translocation
inhibition (IC50: 35 nM) derived from ring expansion imply
that the binding pocket of Sec61α (isoform 1) can accommodate
further structural modifications, likely in the fatty acid portion.
Streamlined preparation of the key diol intermediate 5 enabled gram-scale production, allowing us to establish that ipomoeassin
F is biologically active in vivo (MTD: ∼3 mg/kg).
An efficient synthetic route for ipomoeassin F and its tiglate-modified analogues was developed. The route features late-stage conformation-controlled highly regioselective esterification of the glucose diol in the disaccharide core. The results from the NCI-60 cell line screens of ipomoeassin F were reported for the first time. Moreover, two new C-3-cinnamoyl-Glcp analogues (2 and 3) were prepared. Their in-house cytotoxicity data convey an important message that both identity and positioning of the two α,β-unsaturated esters are crucial. They are not interchangeable.
Ipomoeassin F, a plant-derived macrolide, exhibited single-digit nanomolar growth inhibition activity against many cancer cell lines. In this report, a series of 5-oxa/aza analogues was prepared and screened for cytotoxicity. Replacement of 5-CH with O/NH simplified the synthesis and led to only a small activity loss. N-methylation almost completely restored the potency. Further studies with additional 5-oxa analogues suggested, for the first time, that size and flexibility of the ring also significantly influence the bioactivity of ipomoeassin F.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.