The commercially available diagnostic tests for Chagas’ disease employ whole extracts or semipurified fractions ofTrypanosoma cruzi epimastigotes. Considerable variation in the reproducibility and reliability of these tests has been reported by different research laboratories, mainly due to cross-reactivity with other pathogens and standardization of the reagents. The use of recombinant antigens for the serodiagnosis of Chagas’ disease is recommended to increase the sensitivity and specificity of serological tests. Expressed in Escherichia coli, as fusion products with glutathione S-transferase, six T. cruzirecombinant antigens (H49, JL7, A13, B13, JL8, and 1F8) were evaluated in an enzyme-linked immunosorbent assay for Chagas’ disease. The study was carried out with a panel of 541 serum samples of chagasic and nonchagasic patients from nine countries of Latin America (Argentina, Bolivia, Brazil, Chile, Colombia, El Salvador, Guatemala, Honduras, and Venezuela). The optimal concentration of each recombinant antigen for coating of plates was determined with the help of125I-labelled recombinant proteins. While the specificity of the epimastigote antigen was 84% because of false positives from leishmaniasis cases, for the recombinant antigens it varied from 96.2 to 99.6%. Recombinant antigens reacted with 79 to 100% of serum samples from chronic chagasic patients. In this way, it is proposed that a mixture of a few T. cruzi recombinant antigens should be employed in a diagnostic kit to minimize individual variation and promote high sensitivity in the diagnosis of Chagas’ disease.
We have cloned and sequenced a cDNA for a metacyclic trypomastigote-specific glycoprotein with a molecular mass of 90 kDa, termed MTS-gp90. By immunoblotting, antibodies to the MTS-gp9O recombinant protein reacted exclusively with a 90-kDa antigen of metacyclic trypomastigotes. The insert of the MTS-gp90 cDNA clone strongly hybridized with a single 3.0-kb mRNA of metacyclic forms, whereas the hybridization signal with epimastigote mRNA was weak and those with RNAs from other developmental stages were negative, indicating that transcription of the MTS-gp9O gene is developmentally regulated. A series of experiments showed that the MTS-gp90 gene is present in multiple copies in the Trypanosoma cruzi genome, arranged in a nontandem manner, and that there are at least 40 copies of the gene per haploid genome. Sequence analysis of recombinant MTS-gp90 revealed 40 to 60%zo identity at the amino acid level with members of a family of mammalian stage-specific, 85-kDa surface antigens of T. cruzi. However, there are considerable differences in the amino acid compositions outside the homology region. 4196 on August 2, 2020 by guest
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.