<p>En este artículo se describe la metodología empleada en la asignatura “Análisis y Simulación de Procesos”, del grado en Ingeniería Química, para el modelado de procesos reales de parámetros distribuidos, discretización del sistema de EDPs resultante empleando el Método de las Líneas (MOL) y posterior simulación con Matlab. La innovación aquí expuesta se basa en la utilización de unas plantillas-guía que el profesor ha creado con Matlab para que los alumnos puedan afrontar con facilidad estos procesos complejos, así como el análisis e interpretación de los resultados obtenidos.</p>
We compare different solutions of the convection-diffusion-reaction problem with Danckwerts boundary conditions. Analytical solution is found, and method of lines and Crank-Nicholson method are described, applied, and compared for different values of Péclet and Damköhler numbers. The eigenvalues and eigenfunctions have been obtained for all the possible values of the dimensionless parameters. And the analytical expression of the concentration has been calculated with the optimum number of terms in the Fourier expansion.
Let X(μ) be a Banach function space. In this paper we introduce two new geometric notions, q‐convexity and weak q‐convexity associated to a subset S of the unit ball of the dual of X(μ), 1 ≤ q < ∞. We prove that in the general case both notions are not equivalent and we study the relation between them, showing that they can be used for describing the weak topology in these spaces. We define the canonical q‐concave weak topology τq on X(μ)—a topology generated by q‐concave seminorms—for obtaining our main result: A σ‐order continuous Banach function space X(μ) is q‐convex if and only if the following topological inclusions τw⊆τq⊆τ‖ · ‖ hold. As an application, in the last section we prove a suitable Maurey‐Rosenthal type factorization theorem for operators from a Banach function space X(μ) into a Banach space that holds under weaker assumptions on the q‐convexity requirements for X(μ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.