The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.
We report the inscription of a Bragg grating in an undoped polymethylmethacrylate based microstructured fiber in a time record. The fiber has been irradiated with a 248 nm ultraviolet radiation, through the phase mask technique using low fluence and low repetition rate. The experimental conditions were chosen to modify the core refractive index of the fiber at the incubation regime and avoiding polymer ablation. The peak reflection of the Bragg grating was centered in the infrared region with 20 dB reflection and 0.16 nm bandwidth. These spectral properties are well attractive for sensors and communications applications.
A wearable and wireless system designed to evaluate quantitatively the human gait is presented. It allows knee sagittal motion monitoring over long distances and periods with a portable and low-cost package. It is based on the measurement of transmittance changes when a side-polished plastic optical fibre is bent. Four voluntary healthy subjects, on five different days, were tested in order to assess inter-day and inter-subject reliability. Results have shown that this technique is reliable, allows a one-time calibration and is suitable in the diagnosis and rehabilitation of knee injuries or for monitoring the performance of competitive athletes. Environmental testing was accomplished in order to study the influence of different temperatures and humidity conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.