Lipid profiles of children with CD differ across sexes and from reference population. GFD, being unexpectedly appropriate in fibers and fat proportion, may be a contributor.
Question: Can landscape quality be evaluated and compared with a single numerical value using vegetation maps? Location: Northern Apennines (Italy), ca. 44° N,10–11° E. Methods: Seven phytosociological vegetation maps (1:25000), which correspond to man's different impact on mountain landscapes, were considered. Syntaxa were classified into five degrees of naturalness: urbanized, agricultural, semi‐natural, sub‐natural, and natural. Vegetation maps showing naturalness were derived in a vectorial GIS. The degrees of naturalness were ordered according to increasing naturalness. If c1 is the cumulative relative value of every mapped area of the degrees of naturalness, the sum of these cumulative values A =∑ ci is is a measure of vegetation artificiality. Its maximum value is Amax= n‐1. The Index of Vegetation Naturalness IVN = 1 ‐A/Amax, ranging from 0 to 1. Our IVN is an extension of the ILC by Pizzolotto & Brandmayr (1996) due to the ordinal character of the vegetation classification into degrees of naturalness. The maps of vegetation naturalness were also analysed by two known metrics for the evaluation of landscape quality: TECI (Total Edge Contrast Index) and MSI (Mean Shape Index). Results: The case studies show that IVN is linearly correlated with decreasing area of urbanized and agricultural vegetation types as well as with increasing area of the highest degree of naturalness. Conclusions: IVN can be joined with the TECI for the evaluation of naturalness of landscapes. TECI can supply additional information about the importance of landscape ecotones. Our case studies suggest that an urbanized landscape should correspond to IVN values lower than 0.20. A natural landscape will have IVN values higher than 0.80.
Aim: A gluten-free diet (GFD) can expose children to excessive calories and fat intake. The study is intended to verify whether and how food intake, laboratory parameters, and growth are modified by a year of GFD. Methods: In 79 CD (coeliac disease) children (mean age 7.9 ± 3.8 years, 52 females, 27 males) diagnosed over 24 months, 24-h food diaries, food-frequency patterns, anthropometric and laboratory parameters (mainly blood sugar, insulin, lipid profile, and homocysteine) were prospectively collected before and during the first year of GFD. Nutrient intakes were compared over time and with recommendations. They were also used as regressors to explain the levels and changes of metabolic and growth variables. p-values < 0.05 were considered statistically significant. Results: Average macronutrient intake did not change during the year. Caloric intake remained below 90% (p ≤ 0.0001) and protein intake above 200% (p ≤ 0.0001) of recommendations. Lipid intake was stable at 34% of overall energy intake. Unsaturated fats increased (less omega-6 and more omega-3 with a ratio improvement from 13.3 ± 5.5 to 8.8 ± 3.1) and so did fibers, while folate decreased. The children who experienced a containment in their caloric intake during the year, presented a slower catch-up growth. Some differences were found across gender and age groups. In particular, adolescents consumed less calories, and females more omega-3. Fiber and simple sugar intakes emerged as implicated in lipid profile shift: fibers negatively with triglycerides (TG) (p = 0.033), simple sugars negatively with high-density lipoprotein (HDL) (p = 0.056) and positively with TG (p = 0.004). Waist-to-height ratio was positively associated with homocysteine (p = 0.018) and Homeostasis Model Assessment (p = 0.001), negatively with fibers (p = 0.004). Conclusion: In the short run, GFD is nutritionally very similar to any diet with gluten, with some improvements in unsaturated fats and fiber intake. Along with simple sugars containment, this may offer CD patients the opportunity for a fresh start. Caloric intakes may shift and should be monitored, especially in adolescents.
Introduction: A healthy diet is characterized by a variety of food and a balanced energy intake, which should accompany every human being since early childhood. Unfortunately, excessive consumption of protein, fat, and lately sugar are very common in developed countries. Sugar intakes are not easily quantifiable and comparable among subjects. Therefore, we decide to analyze dietary patterns in children of different ages and diets (with and without gluten) using a food and nutrient database and a new application called the “Zuccherometro”. Patients and methods: This is a descriptive observational study conducted among children that are recruited consecutively either during a pediatric evaluation or through a school survey. Sociodemographic, nutritional and anthropometric data, degree of physical activity, and presence of medical conditions are collected. Dietary intake data are obtained by a 24 h recall diet. Results: The study analyzes 400 children: 213 girls and 187 boys. The majority of children (70.7%) are in normal weight range with similar extreme values (6.5% obese and 6.7% underweight). Celiac disease is diagnosed in 186 children. Caloric intakes are in line with the recommendations in all age-distributed groups with the exception of adolescents (11–17 years old), whose caloric intake is lower than recommendations. Protein intakes, on the contrary, are always exceeding recommendations and are significantly elevated in preschool children, (more than three times the population reference intakes). As for sugar intakes, all the children except the 11–17 years adolescents exceed the recommended cut off of 15% of daily calories. The same trend is obtained using the “Zuccherometro” that shows different percentages of age-stratified children exceeding the reference values: 1–3 years, 59% of children; 4–6 years, 68%; 7–10 years, 39.8%; 11–14 years, 25.5%; 15–17 years, 24.5%. The sugar load consists of both natural or added sugars (fructose and lactose) in food or beverages. Sugar intakes are more generously consumed by all age-stratified controls than by celiac children with the exception of the youngest ones (1–3 years old) and male adolescents. Conclusion: Since high sugar intakes are constantly accompanying children during their growth, important dietary education and coordination between families and institutions are mandatory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.