Various studies have shown that the reproductive organs are highly sensitive to toxic elements found in the environment. Due to technological progress, the use of nanoparticles has become more common nowadays. Nanoparticles are used for drug delivery because their dimensions allow them to circulate throughout the body and enter directly into the cell. Antimicrobial properties are increasingly used in the manufacture of medical devices, textiles, food packaging, cosmetics, and other consumer products. Nanoparticles provide several benefits, but aspects related to their effects on living organisms and the environment are not well known. This review summarizes current in vivo, and in vitro animal studies focused on the evaluation of toxicity of selected metal nanoparticles (Ag, ZnO, TiO2) on male and female reproductive health. It can be concluded that higher concentrations of metal nanoparticles in the male reproductive system can cause a decrease in spermatozoa motility, viability and disruption of membrane integrity. Histopathological changes of the testicular epithelium, infiltration of inflammatory cells in the epididymis, and prostatic hyperplasia have been observed. Nanoparticles in the female reproductive system caused their accumulation in the ovaries and uterus. Metal nanoparticles most likely induce polycystic ovary syndrome and follicular atresia, inflammation, apoptosis, and necrosis also occurred.
This study monitored the chemical and biochemical composition of bovine seminal plasma (SP). Freshly ejaculated semen (n = 20) was aliquoted into two parts. The first aliquot was immediately assessed to determine the sperm motion parameters. Another motility measurement was performed following an hour-long co-incubation of spermatozoa with SP at 6 °C. The other aliquot was processed to obtain the SP. Seminal plasma underwent the analyses of chemical composition and quantification of selected proteins, lipids and RedOx markers. Determined concentrations of observed parameters served as input data to correlation analyses where associations between micro and macro elements and RedOx markers were observed. Significant correlations of total oxidant status were found with the content of Cu and Mg. Further significant correlations of glutathione peroxidase were detected in relation to Fe and Hg. Furthermore, associations of chemical elements and RedOx markers and spermatozoa quality parameters were monitored. The most notable correlations indicate beneficial effects of seminal Fe on motility and Mg on velocity and viability of spermatozoa. On the contrary, negative correlations were registered between Zn and sperm velocity and seminal cholesterol content and motility. Our findings imply that seminal plasma has a prospective to be developed as the potential biomarker of bull reproductive health.
This study was aimed to determine the impact of different taurine and caffeine combinations on the motility, viability, and oxidative markers of chilled stallion spermatozoa. Each stallion semen sample was diluted in a ratio of 1:2, with various taurine and caffeine concentrations (2.5–7.5 mg/mL taurine + 0.625–1.25 mg/mL caffeine) dissolved in a conventional extender. The control samples (CON) were prepared by diluting ejaculate only using the conventional extender. The motility was analyzed using a CASA system at different time intervals (0, 6, 12, 24, and 30 h) and the viability was evaluated using a mitochondrial toxicity test (MTT) performed at the end of the incubation at 5 °C. The liquid part of experimental samples was separated by centrifugation after 30 h of incubation and underwent the evaluation of oxidative stress via the quantification of markers ferric reducing ability of plasma (FRAP) and total oxidant status (TOS). The samples that were treated with a combination of taurine and caffeine significantly improved the motility parameters, mainly after 12, 24, and 30 h of incubation. Samples extended with combination of taurine and caffeine neither compromise viability nor alterations of redox status. The results of this study describe the combination of taurine and caffeine as an optimal supplement for improving the quality of stallion semen during chilled storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.