Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.psychology | behavior | comparative methods | inhibitory control | executive function S ince Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (2-40) and potentially derived features of human psychology (41-61), we know much less about the major forces shaping cognitive evolution (62-71). With the notable exception of Bitterman's landmark studies conducted several decades ago (63, 72-74), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (76-92). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48,70,89,(93)(94)(95)(96)(97)(98). SignificanceAlthough scientists have identified surprising cognitive flexibility in animals and potentially unique features of human psychology, we know less about the selective forces that favor cognitive evolution, or the proximate biological mechanisms underlying this process. We tested 36 species in two problemsolving tasks measuring self-control and evaluated the leading hypotheses regarding how ...
Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.
In a study of two congeneric rodent species, sex differences in hippocampal size were predicted by sexspecific patterns of spatial cognition. Hippocampal size is known to correlate positively with maze performance in laboratory mouse strains and with selective pressure for spatial memory among passerine bird species. In polygamous vole species (Rodentia: Microtus), males range more widely than females in the field and perform better on laboratory measures of spatial ability; both of these differences are absent in monogamous vole species. Ten females and males were taken from natural populations of two vole species, the polygamous meadow vole, M. pennsylvanicus, and the monogamous pine vole, M. pinetorum. Only in the polygamous species do males have larger hippocampi relative to the entire brain than do females. Two-way analysis of variance shows that the ratio of hippocampal volume to brain volume is differently related to sex in these two species. To our knowledge, no previous studies of hippocampal size have linked both evolutionary and psychometric data to hippocampal dimensions. Our controlled comparison suggests that evolution can produce adaptive sex differences in behavior and its neural substrate.The hippocampus, a large forebrain structure, plays an important role in spatial learning (1-3). Rodents given hippocampal lesions show impaired performance on spatial tasks (4-6), and spatial performance is positively correlated with certain hippocampal dimensions in inbred mouse strains (7-9). Hippocampal size also varies between males and females in laboratory rats (10) and across species (11,12). Recent evidence suggests that variation in hippocampal size among species may be adaptively related to interspecific differences in the intensity of selection for spatial processing: the hippocampus is relatively larger in birds that hoard food items in scattered locations than it is in avian species that do not use this spatially demanding foraging tactic (13-15). In general, ecological pressures are known to shape brain evolution (16)(17)(18). In this paper, we integrate field and laboratory data on spatial behavior with measures of hippocampal size to show that evolution may produce adaptive sex differences in particular brain structures.Likely candidates for neural sex differences are species known to exhibit adaptive sex differences in spatial ability. Spatial ability should evolve in proportion to the navigational demands that an individual faces in its natural environment. In most mammalian species, males and females exploit the same environment, but the patterns of competition for mates determine how the two sexes exploit this environment. In monogamous species, the sexes exhibit convergent reproductive strategies. They exploit the environment in similar ways and therefore are subject to similar selective pressures for spatial ability. Conversely, divergent reproductive strategies predominate in polygamous species. Here, range expansion is an important tactic used by polygamous males to maximize the...
In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.