Enzymatic replacement therapy (ERT) is not very effective in halting the progression of Fabry disease (FD) toward cardiovascular (CV)-renal remodeling, particularly in case of late diagnosis. FD patients have increased oxidative stress (OS), critical for the induction of CV-renal remodeling. We investigated the effects of an adjuvant antioxidant treatment to ERT on OS and the possible advantages for related complications. OS was evaluated in 10 patients with FD before ERT, after 12 months of ERT, and after 6 months of adjuvant green tea (GT) to ERT by the following experiments: expression of p22phox; phosphorylation state of MYPT-1 and ERK 1/2 (by western blotting); and quantification of malondialdehyde (MDA) and heme oxygenase (HO)-1 levels (by ELISA). p22phox and MYPT-1 phosphorylation decreased after ERT and significantly further decreased after GT. ERK 1/2 phosphorylation and MDA levels remained unchanged after ERT, but significantly decreased after GT. HO-1 significantly increased after ERT and further increased after GT. This study provides preliminary data highlighting the antioxidant effect exerted by ERT itself, further amplified by the adjuvant antioxidant treatment with GT. The results of this study provide evidence of the positive effect of early additive antioxidant treatment to reduce OS and prevent/alleviate cardio and cerebrovascular-renal complications related to OS.
Background: Gitelman’s and Bartter’s syndromes (GS/BS) are rare genetic tubulopathies characterized by electrolyte imbalance and activation of the renin angiotensin aldosterone system (RAAS). These syndromes have intriguing biochemical and hormonal abnormalities that leads them to be protected from hypertension, cardiovascular and renal remodeling.
Summary: In this review we explore the biochemical/molecular mechanisms induced by the activation of the RAAS and its counterregulatory arm which is particularly activated in GS/BS patients, in the context of blood pressure regulation. In addition, we report our findings in the context of COVID-19 pandemic where we observed GS/BS subjects being protected from infection.
Key Messages: The intracellular pathways induced by Ang II starting from induction of oxidative stress and vasoconstriction, are crucial for the progression toward cardiovascular-renal remodeling and might be useful targets in order to reduce/halt the progression of Ang II/oxidative stress-induced cardiovascular-renal morbidity in several diseases.
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A (α-GalA) with consequent lysosomal accumulation of glycosphingolipid in various organs. Currently, enzyme replacement therapy is the cornerstone of the treatment of all Fabry patients, although in the long-term it fails to completely halt the disease’s progression. This suggests on one hand that the adverse outcomes cannot be justified only by the lysosomal accumulation of glycosphingolipids and on the other that additional therapies targeted at specific secondary mechanisms might contribute to halt the progression of cardiac, cerebrovascular, and renal disease that occur in Fabry patients. Several studies reported how secondary biochemical processes beyond Gb3 and lyso-Gb3 accumulation—such as oxidative stress, compromised energy metabolism, altered membrane lipid, disturbed cellular trafficking, and impaired autophagy—might exacerbate Fabry disease adverse outcomes. This review aims to summarize the current knowledge of these pathogenetic intracellular mechanisms in Fabry disease, which might suggest novel additional strategies for its treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.