Bisphosphonates are widely employed drugs for the treatment of pathologies characterized by excessive bone resorption, and display a great affinity for apatitic supports. In this work we investigate how hydroxyapatite functionalization can influence the processes of adsorption and release of a bisphosphonate, namely risedronate. To this aim, pure hydroxyapatite (HA), hydroxyapatite with a partial substitution of Zn to Ca (ZnHA) and poly-ethylenimine-functionalized hydroxyapatite (HAPEI) were submitted to interaction with risedronate solution. The results indicate that the mechanisms of adsorption and release are greatly influenced by the type of the apatitic support. All the apatitic supports display Langmuir isotherms for risedronate adsorption. However in the case of HAPEI the plateau is not reached even at high equilibrium concentrations in solution. The data suggest that risedronate adsorption on HAPEI mineral-organic support occurs not only through chemisorption on apatitic phase, as on HA and ZnHA, but also through physisorption involved by PEI coating, which modulates also bisphosphonate release. These properties of tailor-made hydroxyapatite supports could be exploited to develop delivery systems for antiresorptive agents directly on osteoporotic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.