Rosiglitazone is a commonly prescribed insulin-sensitizing drug with a selective agonistic activity on the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). PPAR-gamma can modulate inflammatory responses in the brain, and agonists might be beneficial in neurodegenerative diseases. In the present study we used a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid (MPTPp) mouse model of progressive Parkinson's disease (PD) to assess the therapeutic efficacy of rosiglitazone on behavioural impairment, neurodegeneration and inflammation. Mice chronically treated with MPTPp displayed typical features of PD, including impairment of motor and olfactory functions associated with partial loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc), decrease of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) content and dynorphin (Dyn) mRNA levels in the caudate-putamen (CPu), intense microglial and astroglial response in the SNc and CPu. Chronic rosiglitazone, administered in association with MPTPp, completely prevented motor and olfactory dysfunctions and loss of TH-positive cells in the SNc. In the CPu, loss of striatal DA was partially prevented, whereas decreases in DOPAC content and Dyn were fully counteracted. Moreover, rosiglitazone completely inhibited microglia reactivity in SNc and CPu, as measured by CD11b immunostaining, and partially inhibited astroglial response assessed by glial fibrillary acidic protein immunoreactivity. Measurement of striatal MPP+ levels 2, 4, 6 h and 3 days after chronic treatment indicated that MPTP metabolism was not altered by rosiglitazone. The results support the use of PPAR-gamma agonists as a putative anti-inflammatory therapy aimed at arresting PD progression, and suggest that assessment in PD clinical trials is warranted.
Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel−/−) mice developed a Parkinson’s disease-like neuropathology with ageing. At 18 months of age, c-rel−/− mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel−/− mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel−/− mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel−/− mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel−/− mice may be a suitable model of Parkinson’s disease.
Parkinson's disease (PD) is characterized by a progressive degeneration of dopamine (DA) neurons and gradual worsening of motor symptoms. The investigation of progressive degenerative mechanisms and potential neuroprotective strategies relies on experimental models of the chronic neuropathology observed in human. The present study investigated the progressive nature of neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTPp) chronic mouse model of PD. MPTP (25 mg/kg) plus probenecid (250 mg/kg) were administered twice a week for 5 weeks. We evaluated behavioral deficits (olfactory and motor impairment), neurodegeneration (loss of tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, SNc), biochemical markers of functional impairment in the caudate-putamen (CPu) (striatal enkephalin mRNA, DA and DOPAC levels), and glial reactivity (CD11b and GFAP immunoreactivity in the SNc and CPu) at progressive time-points (after 1, 3, 7, and 10 administrations of MPTPp). Olfactory dysfunction already appeared after the 1st MPTPp injection, whereas motor dysfunction appeared after the 3rd and worsened upon subsequent administrations. Moreover, starting after three MPTPp injections, we observed a gradual decline of TH-positive cells in the SNc, and a gradual raise of enkephalin mRNA in the CPu. Striatal DA levels reduction was not different among all time-points evaluated, whereas DOPAC levels were similarly reduced after 1-7 MPTP injections, but were further decreased after the 10th injection. Reactive microglia and astroglia were observed in both the SNc and CPu from the 1st MPTPp administration. In the SNc, gliosis displayed a gradual increase over the treatment. After 2 months, TH, DA, DOPAC, and reactive glia in the SNc were still altered in MPTPp-treated mice as compared to controls. By showing a progressive development of behavioral deficits and nigral neurodegeneration, together with impairment of biochemical parameters and gradual increase of glial response, results suggest that the chronic MPTPp protocol is a model of progressive PD, which may be suitable to investigate chronic pathological processes and neuroprotective strategies in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.