Human leukocyte antigen G (HLA-G) is a nonclassical MHC class I molecule that exerts important tolerogenic functions. Its main physiologic expression occurs in the placenta, where it participates in the maternal tolerance toward the fetus. HLA-G expression was found in embryonic tissues, in adult immune privileged organs, and in cells of the hematopoietic lineage. It is expressed in various types of primary solid (melanoma, head and neck, lung, urogenital, gastrointestinal, and breast cancers) and hematologic malignancies (acute leukemia, lymphomas) and metastases. HLA-G ectopic expression is observed in cancer, suggesting that its expression is one strategy used by tumor cells to escape immune surveillance. In this review, we will focus on HLA-G expression in cancers and its association with the prognosis. We will highlight the underlying molecular mechanisms of impaired HLA-G expression, the immune tolerant function of HLA-G in tumors, and the potential diagnostic use of membrane-bound and soluble HLA-G as a biomarker to identify tumors and to monitor disease stage. As HLA-G is a potent immunoinhibitory molecule, its blockade remains an attractive therapeutic strategy against cancer.
Circulating cell-free DNA represents a non-invasive biomarker, as it can be isolated from human plasma, serum and other body fluids. Circulating tumor DNA shed from primary and metastatic cancers may allow the non-invasive analysis of the evolution of tumor genomes during treatment and disease progression through 'liquid biopsies'. The serial monitoring of tumor genotypes, which are instable and prone to changes under selection pressure, is becoming increasingly possible. The "liquid biopsy" provide novel biological insights into the process of metastasis and may elucidate signaling pathways involved in cell invasiveness and metastatic competence. This review will focus on the clinical utility of circulating cell free DNA in main solid tumors, including genetic and epigenetic alterations that can be detected.
Targeted immune checkpoint blockade augments anti-tumor immunity and induces durable responses in patients with melanoma and other solid tumors. It also induces specific “immune-related adverse events” (irAEs). IrAEs mainly include gastrointestinal, dermatological, hepatic and endocrinological toxicities. Off-target effects that arise appear to account for much of the toxicity of the immune checkpoint blockade. These unique “innocent bystander” effects are likely a direct result of breaking immune tolerance upon immune check point blockade and require specific treatment guidelines that include symptomatic therapies or systemic corticosteroids. What do we need going forward to limit immune checkpoint blockade-induced toxicity? Most importantly, we need a better understanding of the roles played by these agents in normal tissues, so that we can begin to predict potentially problematic side effects on the basis of their selectivity profile. Second, we need to focus on the predictive factors of the response and toxicity of the host rather than serially focusing on individual agents. Third, rigorous biomarker-driven clinical trials are needed to further elucidate the mechanisms of both the benefit and toxicity. We will summarize the double-edged sword effect of immunotherapeutics in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.