Neuronal stimulation induced by the brain‐derived neurotrophic factor (BDNF) triggers gene expression, which is crucial for neuronal survival, differentiation, synaptic plasticity, memory formation, and neurocognitive health. However, its role in chromatin regulation is unclear. Here, using temporal profiling of chromatin accessibility and transcription in mouse primary cortical neurons upon either BDNF stimulation or depolarization (KCl), we identify features that define BDNF‐specific chromatin‐to‐gene expression programs. Enhancer activation is an early event in the regulatory control of BDNF‐treated neurons, where the bZIP motif‐binding Fos protein pioneered chromatin opening and cooperated with co‐regulatory transcription factors (Homeobox, EGRs, and CTCF) to induce transcription. Deleting cis‐regulatory sequences affect BDNF‐mediated Arc expression, a regulator of synaptic plasticity. BDNF‐induced accessible regions are linked to preferential exon usage by neurodevelopmental disorder‐related genes and the heritability of neuronal complex traits, which were validated in human iPSC‐derived neurons. Thus, we provide a comprehensive view of BDNF‐mediated genome regulatory features using comparative genomic approaches to dissect mammalian neuronal stimulation.
Neuronal activity induced by brain-derived neurotrophic factor (BDNF) triggers gene expression, which is crucial for neuronal survival, differentiation, synaptic plasticity, memory formation, and neurocognitive health. However, its role in chromatin regulation is unclear. Here, using temporal profiling of chromatin accessibility and transcription in mouse primary cortical neurons upon either BDNF stimulation or depolarization (KCl), we identify features that define BDNF-specific chromatin-to-gene expression programs. Enhancer activation is an early event in the regulatory control of BDNF-treated neurons, where the bZIP motif-binding Fos protein pioneered chromatin opening and cooperated with co-regulatory transcription factors (Homeobox, EGRs, and CTCF) to induce transcription. Deleting cis-regulatory sequences decreased BDNF-mediated Arc expression, a regulator of synaptic plasticity. BDNF-induced accessible regions are linked to preferential exon usage by neurodevelopmental disorder-related genes and heritability of neuronal complex traits, which were validated in human iPSC-derived neurons. Thus, we provide a comprehensive view of BDNF-mediated genome regulatory features using comparative genomic approaches to dissect mammalian neuronal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.