The nucleotide sequence of 16S rDNA from Euglena gracilis chloroplasts has been determined representing the first complete sequence of an algal chloroplast rRNA gene. The structural part of the 16S rRNA gene has 1491 nucleotides according to a comparative analysis of our sequencing results with the published 5'- and 3'-terminal "T1-oligonucleotides" from 16S rRNA from E. gracilis. Alignment with 16S rDNA from Zea mays chloroplasts and E. coli reveals 80 to 72% sequence homology, respectively. Two deletions of 9 and 23 nucleotides are found which are identical in size and position with deletions observed in 16S rDNA of maize and tobacco chloroplasts and which seem to be characteristic for all chloroplast rRNA species. We also find insertions and deletions in E. gracilis not seen in 16S rDNA of higher plant chloroplasts. The 16S rRNA sequence of E. gracilis chloroplasts can be folded by base pairing according to the general 16S rRNA secondary structure model.
An extra 16S rRNA gene (s-16S rDNA) from the Euglena gracilis chloroplast genome and several hundred positions of its flanking regions have been sequenced. The structural part has 1486 positions and is to 98% homologous in its sequence with the 16S rRNA gene in functional chloroplast rRNA operons. Sequences of about 200 positions upstream and 15 positions downstream of the structural part of the s-16S rRNA gene region are highly homologous with corresponding parts in the functional operon. Neither tRNA genes (A1a, I1e) nor parts of the 23S and 5S rRNA genes are found within 557 positions after the 3' end of the s-16S rRNA gene, i.e., the 330 bp homology, observed in electron microscopic studies of heteroduplexes (4), between the s-16S rDNA downstream region and the 6.2 kb repeated segment containing the functional rRNA operon, must be due to a DNA stretch in the interoperon spacer. A structural model of the "truncated rRNA operon" is presented. Results from S-1 endonuclease analysis suggest that the s-16S rDNA region is probably not transcribed into stable s-16S rRNA.
Nine independently derived clones of mutagenized rat hepatoma cells selected for resistance to 6-mercaptopurine (6-MP) or 6-thioguanine (6-ThioG) have been isolated. Each has severely reduced catalytic activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and seven of them possess significantly increased activities of phosphoribosylpyrophosphate (PRPP) synthetase. The degrees of elevations of PRPP synthetase activities do not correlate with the degrees of deficiencies of HPRT activities. The cells from one of these clones, 1020/12, posses 40% of the normal HPRT catalytic activity and overproduce purines. We have extensively examined the cells from this clone. Immunotration studies of 1020/12 cells indicate that there is a mutation in the structural gene for HPRT. Although they possess increased specific catalytic activities of the enzyme. PRPP synthetase, the catalytic parameters, heat stability, and isoelectric pH of PRPP synthetase from 1020/12 cells are indistinguishable from those of the enzyme from wild-type cells. The cause of purine overproduction by 1020/12 cells appears to be the elevated PRPP synthetase activity, rather than a PRPP "sparing" effect stemming from reduced HPRT activity. Support for this idea is provided by the observation that the complete loss of HPRT activity in a clone derived from 1020/12 cells does not further enhance the levels of PRPP synthetase or purine overproduction. We propose that the elevated levels of PRPP synthetase activity in these HPRT deficient cells result from a mutational event in the structural gene for HPRT, and that this causes the disruption of a previously undescribed regulatory function of this gene on the expression of the PRPP synthetase gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.