Vitamin D is a fundamental regulator of host defences by activating genes related to innate and adaptive immunity. Previous research shows a correlation between the levels of vitamin D in patients infected with SARS-CoV-2 and the degree of disease severity. This work investigates the impact of the genetic background related to vitamin D pathways on COVID-19 severity. For the first time, the Portuguese population was characterized regarding the prevalence of high impact variants in genes associated with the vitamin D pathways. This study enrolled 517 patients admitted to two tertiary Portuguese hospitals. The serum concentration of 25 (OH)D, was measured in the hospital at the time of patient admission. Genetic variants, 18 variants, in the genes AMDHD1, CYP2R1, CYP24A1, DHCR7, GC, SEC23A, and VDR were analysed. The results show that polymorphisms in the vitamin D binding protein encoded by the GC gene are related to the infection severity (p = 0.005). There is an association between vitamin D polygenic risk score and the serum concentration of 25 (OH)D (p = 0.04). There is an association between 25 (OH)D levels and the survival and fatal outcomes (p = 1.5e−4). The Portuguese population has a higher prevalence of the DHCR7 RS12785878 variant when compared with its prevalence in the European population (19% versus 10%). This study shows a genetic susceptibility for vitamin D deficiency that might explain higher severity degrees in COVID-19 patients. These results reinforce the relevance of personalized strategies in the context of viral diseases.Trial registration: NCT04370808.
Iron refractory iron deficiency anemia (IRIDA) is an autosomal recessive ferropenic anemia. Its hypochromic microcytic pattern is associated with low transferrin saturation, normal-high ferritin, and inappropriately high hepcidin level. This entity is caused by mutants of the TMPRSS6 gene that encodes the protein matriptase II, which influences hepcidin expression, an iron metabolism counterregulatory protein. We report two 29-year-old dizygotic female twins with ferropenic, hypochromic microcytic anemia with 20 years of evolution, refractory to oral iron therapy. After exclusion of gastrointestinal etiologies, IRIDA diagnosis was suspected and a novel mutation in the TMPRSS6 gene was identified. It was found in intron 11 (c.1396+4 A>T) and seems to affect the gene expression. In addition, 3 polymorphisms already associated with a higher risk of developing iron deficiency anemia were also found (D521D, V736A, and Y739Y). Our case reports an undescribed mutation causing IRIDA and supports the hypothesis that this clinical syndrome may be more common than previously thought and its genetics more heterogeneous than initially described.
Background: Vitamin D is a fundamental regulator of host defences by activating genes related to innate and adaptive immunity. Previous research shows a correlation between the levels of vitamin D in patients infected with SARS-CoV-2 and the degree of disease severity. This work investigates the impact of the genetic background related to vitamin D pathways on COVID-19 severity. For the first time, the Portuguese population was characterized regarding the prevalence of high impact variants in genes associated with the vitamin D pathways. Methods: This study enrolled 517 patients admitted to two tertiary Portuguese hospitals. The serum concentration of 25 (OH)D, was measured in the hospital at the time of patient admission. Genetic variants, 18 variants, in the genes AMDHD1, CYP2R1, CYP24A1, DHCR7, GC, SEC23A, and VDR were analysed. Results: The results show that polymorphisms in the vitamin D binding protein encoded by the GC gene are related to the infection severity (p = 0.005). There is an association between vitamin D polygenic risk score and the serum concentration of 25 (OH)D (p = 0.042). There is an association between 25 (OH)D levels and the survival and fatal outcomes (p = 1.5e-4). The Portuguese population has a higher prevalence of the DHCR7 RS12785878 variant when compared with its prevalence in the European population (19% versus 10%). Conclusion: This study shows a genetic susceptibility for vitamin D deficiency that might explain higher severity degrees in COVID-19 patients. These results reinforce the relevance of personalized strategies in the context of viral diseases.
Inherited deletions of α-globin genes and/or their upstream regulatory elements (MCSs) give rise to α-thalassemia, an autosomal recessive microcytic hypochromic anemia. In this study, multiplex ligation-dependent probe amplification performed with commercial and synthetic engineered probes, Gap-PCR, and DNA sequencing were used to characterize lesions in the sub-telomeric region of the short arm of chromosome 16, possibly explaining the α-thalassemia/HbH disease phenotype in ten patients. We have found six different deletions, in heterozygosity, ranging from approximately 3.3 to 323 kb, two of them not previously described. The deletions fall into two categories: one includes deletions which totally remove the α-globin gene cluster, whereas the other includes deletions removing only the distal regulatory elements and keeping the α-globin genes structurally intact. An indel was observed in one patient involving the loss of the MCS-R2 and the insertion of 39 bp originated from a complex rearrangement spanning the deletion breakpoints. Finally, in another case, no α-globin gene cluster deletion was found and the patient revealed to be a very unusual case of acquired α-thalassemia-myelodysplastic syndrome. This study further illustrates the diversity of genomic lesions and underlying molecular mechanisms leading to α-thalassemia.
Background: Vitamin D is a fundamental regulator of host defences by activating genes related to innate and adaptive immunity. Previous research shows a correlation between the levels of vitamin D in patients infected with SARS-CoV-2 and the degree of disease severity. This work investigates the impact of the genetic background related to vitamin D pathways on COVID-19 severity. For the first time, the Portuguese population was characterized regarding the prevalence of high impact variants in genes associated with the vitamin D pathways. Methods: This study enrolled 517 patients admitted to two tertiary Portuguese hospitals. The serum concentration of 25 (OH)D, was measured in the hospital at the time of patient admission. Genetic variants, 18 variants, in the genes AMDHD1, CYP2R1, CYP24A1, DHCR7, GC, SEC23A, and VDR were analysed. Results: The results show that polymorphisms in the vitamin D binding protein encoded by the GC gene are related to the infection severity (p = 0.005). There is an association between vitamin D polygenic risk score and the serum concentration of 25 (OH)D (p = 0.042). There is an association between 25 (OH)D levels and the survival and fatal outcomes (p = 1.5e-4). The Portuguese population has a higher prevalence of the DHCR7 RS12785878 variant when compared with its prevalence in the European population (19% versus 10%).Conclusion: This study shows a genetic susceptibility for vitamin D deficiency that might explain higher severity degrees in COVID-19 patients. These results reinforce the relevance of personalized strategies in the context of viral diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.