Understanding the genetic and environmental basis of genotype × environment interaction (G×E) is of fundamental importance in plant breeding. If we consider G×E in the context of genotype × year interactions (G×Y), predicting which lines will have stable and superior performance across years is an important challenge for breeders. A better understanding of the factors that contribute to the overall grain yield and quality of rice ( Oryza sativa L.) will lay the foundation for developing new breeding and selection strategies for combining high quality, with high yield. In this study, we used molecular marker data and environmental covariates (EC) simultaneously to predict rice yield, milling quality traits and plant height in untested environments (years), using both reaction norm models and partial least squares (PLS), in two rice breeding populations ( indica and tropical japonica ). We also sought to explain G×E by differential quantitative trait loci (QTL) expression in relation to EC. Our results showed that PLS models trained with both molecular markers and EC gave better prediction accuracies than reaction norm models when predicting future years. We also detected milling quality QTL that showed a differential expression conditional on humidity and solar radiation, providing insight for the main environmental factors affecting milling quality in subtropical and temperate rice growing areas.
Plant breeders regularly evaluate multiple traits across multiple environments, which opens an avenue for using multiple traits in genomic prediction models. We assessed the potential of multi-trait (MT) genomic prediction model through evaluating several strategies of incorporating multiple traits (eight agronomic and malting quality traits) into the prediction models with two cross-validation schemes (CV1, predicting new lines with genotypic information only and CV2, predicting partially phenotyped lines using both genotypic and phenotypic information from correlated traits) in barley. The predictive ability was similar for single (ST-CV1) and multi-trait (MT-CV1) models to predict new lines. However, the predictive ability for agronomic traits was considerably increased when partially phenotyped lines (MT-CV2) were used. The predictive ability for grain yield using the MT-CV2 model with other agronomic traits resulted in 57% and 61% higher predictive ability than ST-CV1 and MT-CV1 models, respectively. Therefore, complex traits such as grain yield are better predicted when correlated traits are used. Similarly, a considerable increase in the predictive ability of malting quality traits was observed when correlated traits were used. The predictive ability for grain protein content using the MT-CV2 model with both agronomic and malting traits resulted in a 76% higher predictive ability than ST-CV1 and MT-CV1 models. Additionally, the higher predictive ability for new environments was obtained for all traits using the MT-CV2 model compared to the MT-CV1 model. This study showed the potential of improving the genomic prediction of complex traits by incorporating the information from multiple traits (cost-friendly and easy to measure traits) collected throughout breeding programs which could assist in speeding up breeding cycles.
Genotype × environment interaction (G × E) is the differential response of genotypes in different environments and represents a major challenge for breeders. Genotype × year‐interaction (G × Y) is a relevant component of G × E, and accounting for it is an important strategy for identifying lines with stable and superior performance across years. In this study, we compared the prediction accuracy of modeling G × Y using covariance structures that differ in their ability to accommodate correlation among environments. We present the use of these approaches in two different rice (Oryza sativa L.) breeding populations (indica and tropical japonica) for predicting grain yield, plant height, and three milling quality traits—milling yield, head rice percentage, and grain chalkiness—under different cross‐validation (CV) scenarios. We also compared model performance in the context of global predictions (i.e., predictions across years). Most of the benefits of multienvironment models come from modeling genetic correlations between environments when predicting performance of lines that have been tested in some environments but not others (CV2). For predicting the performance of newly developed lines (CV1), modeling between environment correlations has no effect compared with considering environments independently. Response to selection of multienvironment models when modeling covariance structures that accommodate covariances between environments was always beneficial when predicting the performance of lines across years. We also show that, for some traits, high prediction accuracies can be obtained in untested years, which is important for resource allocation in small breeding programs.
Winterhardiness is a complex trait that involves low temperature tolerance (LTT), vernalization sensitivity, and photoperiod sensitivity. Quantitative trait loci (QTL) for these traits were fi rst identifi ed using biparental mapping populations; candidate genes for all loci have since been identifi ed and characterized. In this research we used a set of 148 accessions consisting of advanced breeding lines from the Oregon barley (Hordeum vulgare L. subsp vulgare) breeding program and selected cultivars that were extensively phenotyped and genotyped with single nucleotide polymorphisms. Using these data for genome-wide association mapping we detected the same QTL and genes that have been systematically characterized using biparental populations over nearly two decades of intensive research. In this sample of germplasm, maximum LTT can be achieved with facultative growth habit, which can be predicted using a threelocus haplotype involving FR-H1, FR-H2, and VRN-H2. The FR-H1 and FR-H2 LTT QTL explained 25% of the phenotypic variation, offering the prospect that additional gains from selection can be achieved once favorable alleles are fi xed at these loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.