This study focused on the identification of suitable lipase or esterase activity for enantiomeric resolution of (R,S)-naproxen. For an economically viable reaction the enantiomeric ratio (E) should preferably be >100, while maximising the conversion will reduce the mass of material that requires racemisation and recycling. Hence the aim was to find an enzyme that yields (S)-naproxen with an enantiomeric excess of more than 98%, a substrate conversion in excess of 40% of the racemate, and an E of >100. (R,S)-Naproxen ethyl ester (NEE) (50 mg) was used as substrate for enzyme hydrolysis reactions at 37 • C for 4 h. Biocatalyst screening was performed in buffered aqueous solvent on a 1 ml scale. The reactions were stopped with 2 ml MeCN, filtered through cotton wool and analysed by HPLC to determine the percentage m/m and R/S ratio.Eight commercially available enzymes were selected for optimisation of enantioselectivity through statistically designed experiments where the reaction conditions were varied. ChiroCLEC-CR from Altus and ESL001-01 from Diversa provided acceptable enantiomeric excess, but only ChiroCLEC-CR met the specification set for the enantiomeric ratio (E).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.