Dogs are increasingly used in a wide range of detection tasks including explosives, narcotics, medical, and wildlife detection. Research on detection dog performance is important to understand olfactory capabilities, behavioral characteristics, improve training, expand deployment practices, and advance applied canine technologies. As such, it is important to understand the influence of specific variables on the quantification of detection dog performance such as test design, experimental controls, odor characteristics, and statistical analysis. Methods for testing canine scent detection vary influencing the outcome metrics of performance and the validity of results. Operators, management teams, policy makers, and law enforcement rely on scientific data to make decisions, design policies, and advance canine technologies. A lack of scientific information and standardized protocols in the detector dog industry adds difficulty and inaccuracies when making informed decisions about capability, vulnerability, and risk analysis. Therefore, the aim of this review is to highlight important methodological issues and expand on considerations for conducting scientifically valid detection dog research.
Detection dogs are widely considered the most effective and adaptive method for explosives detection. Increases in emerging sophisticated threats are accelerating the demand for highly capable explosives detection, causing a strain on available supplies of quality canines worldwide. These strains are further compounded by rigorous behavioral standards required to meet mission-specific capabilities, leading to high rates of dogs disqualified from training or deployment. Ample research has explored the behavioral characteristics important for assistance, guide, and other traditional working roles, while those corresponding to more specialized tasks such as detection of explosives are not as well-understood. In this review we aim to identify the behavioral characteristics important for operational tasks of explosives detection dogs, contrasting with that of other working roles and highlighting key differences between explosives and other types of detection dogs. Further, we review the available research on methods for assessing and selecting candidate detection dogs and make recommendations for future directions and applications to the industry. Improvements and standardization in assessment technology allowing for the identification and enhancement of behavioral characteristics will be key to advancing canine detection technology in general.
Specialized detector dogs are increasingly being utilized for the detection of modern threats. The Vapor Wake® (VW) dog was developed to create a dog phenotype ideally suited for detecting hand-carried and body-worn explosives. VW dogs (VWDs) are trained to sample and alert to target odors in the aerodynamic wakes of moving persons, which entrains vapor and small particles from the person. The behavioral characteristics necessary for dogs to be successfully trained and employed for the application of VW are a distinct subset of the desired general characteristics of dogs used for detection tasks due to the dynamic nature of moving targets. The purpose of this study was to examine the behavioral characteristics of candidate detector dogs to determine the particular qualities that set apart VW-capable dogs from others. We assessed 146 candidate detector dogs from a VW breeding and training program. Dogs received identical puppy development and foundational odor training and underwent performance evaluations at 3, 6, 10, and 12 months old, after which they were sold for service. Dogs were categorized based on their final outcome of the training program, independently determined by private vendors, corresponding to three groups: dogs successfully sold for VW, dogs sold for standard explosives detection, and dogs that failed to be placed in any type of detector dog service (Washouts). Comparisons of behavioral evaluations between the groups were made across domains pertaining to search-related behaviors (Performance), reactions to novel stimuli (Environmental), and overall ease of learning new tasks (Trainability). Comparisons were also made at each evaluation to determine any early emergence of differences. VWDs scored significantly higher on Performance characteristics compared to standard explosives detection dogs (EDDs) and Washouts. However, Environmental characteristics did not differentiate VWDs from EDDs, though scores on these measures were significantly lower in the Washouts. Furthermore, differences between groups emerged as early as 3 and 6 months for select measures. We describe the behavioral characteristics targeted for selection in developing the VW phenotype and discuss the relative merit and degree of expression of those characteristics in the success of dogs bred and trained for the VW application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.