Elastin polypeptides
based on -VPGVG- repeated motifs are widely
used in the production of biomaterials because they are stimuli-responsive
systems. On the other hand, glycine-rich sequences, mainly present
in tropoelastin terminal domains, are responsible for the elastin
self-assembly. In a previous study, we have recombinantly expressed
a chimeric polypeptide, named resilin, elastin, and collagen (REC),
inspired by glycine-rich motifs of elastin and containing resilin
and collagen sequences as well. Herein, a three-block polypeptide,
named (REC)
3
, was expressed starting from the previous
monomer gene by introducing key modifications in the sequence. The
choice was mandatory because the uneven distribution of the cross-linking
sites in the monomer precluded the hydrogel production. In this work,
the cross-linked polypeptide appeared as a soft hydrogel, as assessed
by rheology, and the linear un-cross-linked trimer self-aggregated
more rapidly than the REC monomer. The absence of cell-adhesive sequences
did not affect cell viability, while it was functional to the production
of a material presenting antiadhesive properties useful in the integration
of synthetic devices in the body and preventing the invasion of cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.