This study presents the results of laboratory experiments to prepare cotton woven fabrics with photoactive properties. The fabric was treated with TiO 2 – Fe(1%) – N + 2% graphene by exhaustion followed by a fluorocarbon polymer treatment. The fabric was analyzed by Scanning Electron Microscope coupled with Energy Dispersive Spectroscopy (SEM/EDAX), Differential scanning calorimetry (DSC), Contact Angle measurement, physical properties (weight, thickness, breaking strength, elongation, air/water permeability, electrical resistance). The photocatalytic activity was determined initially and after 5 washings by measuring the trichromatic coordinates of the treated fabrics stained with methylene blue and exposed to UV and visible light on a Hunterlab UV-Vis spectrophotometer. The results demonstrate a uniform deposition of doped TiO 2 -graphene particles on material surface. The thermal stability of the coated cotton fabric is practically unmodified in comparison with blank cotton fabric. The decrease of the surface resistivity demonstrates the deposition of graphene layer, known for its good electrical conductivity. The wetting capacity of initial hydrophilic cotton fabric is dramatically modified, the fabric becoming hydrophobic after treatment. The photocatalytic efficiency is higher under visible light than under UV-radiation due to the TiO 2 doping and decoration with graphene, which extend the light absorption from UV to visible range. The good photocatalytic activity under visible light is maintained after 5 washing cycles.
Proper identification of textile materials is essential, as people use textiles for clothing and shelter, dental and medical devices, protective firefighting, or even military clothing. There have been several developments regarding fiber identification using instruments such as Fourier transform infrared spectroscopy, Raman spectroscopy, or electron microscopy. However, the traditional methods are prevalent as they are the cheapest alternative. In the present paperwork, an accelerated weathering test was conducted on two different textile materials – cotton (natural fiber) and polypropylene (synthetic fiber). Alternating cycles of UV exposure, along with humidity and relatively high temperatures were employed for the weathering test. In order to evaluate the degradation degree of the two fibers, the results were compared and investigated using non-destructive and micro-destructive analysis techniques such as Scanning Electron Microscopy (SEM), to evaluate the surface modifications of the fibers, and colorimetry, to quantify the color changes. In addition, Fourier-Transform Infrared Spectroscopy (FT-IR) indicated the modifications of functional groups that occurred after the weathering test. A non-destructive technique – X-Ray Diffraction (XRD) was also performed to obtain information about the crystalline structure. The obtained information will be used for cultural heritage studies.
Generally, the most common damaging factors for linen textile materials are the environmental conditions, their handling, and natural decay. Such environmental factors are ultraviolet (UV) radiation, humidity, and high temperature. Therefore, to investigate the effects these factors may cause, an accelerated weathering test was conducted on linen fabrics, using alternating cycles of UV exposure and humidity, along with relatively high temperatures. The effects of this test were investigated using non-destructive and micro-destructive analysis techniques. Scanning Electron Microscopy (SEM) was used to observe any modifications appearing at the surface of the fibers. Energy Dispersive X-Ray Analysis (EDS) was employed in conjunction with SEM for obtaining the spectrum of the chemical elements that were present at the surface of the linen samples. The modifications of functional groups occurring due to the weathering of linen were assessed by Fourier-Transform Infrared Spectroscopy (FT-IR). The color change of the samples was measured with a spectrophotometer. All the acquired information can be used as a starting point for the development of customized environmental parameters for keeping patrimony linen fabrics in museums in optimum conditions, thus preventing further damage. Additionally, the artificially weathered fabrics will be further employed in conservation experiments as substitute for old linen fabrics.
The presence of dyes in wastewaters from the textile industry, even in concentrations of less than 1 mg/l, significantlyaffects the aesthetic properties and transparence degree of public effluents, with direct repercussions on theenvironment. Cerioporus squamosus White-Rot-Fungi (WRF) strain was used for bio-augmentation of MBBR carriers(consisting of a mix of 88% High Density Polyethylene, 5% talcum and 7% cellulose). Cerioporus squamosus, also oftenencountered as Polyporus squamosus, is a basidiomycete bracket fungus, able to cause “white rot” on decaying wood.The bio-functionalized carriers were used for treatment of a synthetic wastewater sample, of Bemacid ROT (Bezema)azo-dye. Azoic dyes represent one of the most important classes of synthetic dyes used in the textile industry,accounting for over 60–70% of the dyes used in this industry. In the case of reactive groups of azo dyes (-N=N-), dueto the low degrees of fixation on the fiber, there are losses of dyes in solution of up to 50%. Infrared spectral (FT-IR)analysis was carried out for determination of functional groups involved in biodegradative processes. Thus, the obtainedIR spectra, different from those of initial Bemacid ROT dye, the disappearance or decrease of the signal specific to azoicbonds from the initial sample, the formation of new functional groups, the disappearance of intermolecular hydrogenbonds simultaneously with increase of transmittance values for amino groups, resulted in highlighting the degradationof Bemacid ROT dye by the bio-augmented HDPE carriers.
The present article aims to make a preliminary analyze regarding the fibrous composition of an "opreg"(part of a female folk costume composed of a richly decorated piece of fabric and long fringes applied on the lower edge) from the modern-contemporary period, using two micro-destructive methods: Scanning Electron Microscopy (SEM) and optical microscopy. In order to have a better understanding and a precise result, different fibres from the opreg were analyzed- brightly colored cotton yarn (green, pink, lilac) together with synthetic silver and gold composite yarns (lurex). Hand-made textiles have a very important meaning for our history, therefore it is imperious to know what kind of fibres were used in order to be able to create an adequate environment to preserve them. Further analyzes will be carried out in order to have a more detailed image about opreg characteristics and how it was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.