Background: Type 2 diabetes (T2D) is correlated to amnestic mild cognitive impairment (aMCI) and to non-amnestic mild cognitive impairment (naMCI). This study evaluated whether the T2D variable characterizes a peculiar cognitive profile in elderly patients. Moreover, it explores the association between glycated hemoglobin levels (HbA1c), T2D duration, insulin and oral hypoglycemic agent treatment, and cognition in elderly diabetic patients. Methods: Detailed neuropsychological battery was used to diagnose MCI subtypes. A total of 39 MCI subjects with T2D (T2D-MCI) and 37 MCI subjects without T2D (ND-MCI), matched for age, educational level, and Mini-Mental State Examination score, were included. Results: ND-MCI performed worse in memory and language domains than T2D-MCI. The amnestic subtype is more frequent among ND-MCI and non-amnestic subtype in T2D-MCI. In T2D-MCI, high HbA1c levels correlate with episodic memory (immediate recall) and T2D duration. Some indexes of episodic memory (immediate recall), attention, and visual-spatial ability correlate with insulin treatment. Conclusions: An association between T2D and non-amnestic MCI is suggested. In the T2D-MCI group, significant associations between insulin treatment and memory (immediate recall), complex figure copy, and attention were found.
The identification of diagnostic-prognostic biomarkers of dementia has become a global priority due to the prevalence of neurodegenerative diseases in aging populations. The objective of this study was to assess the diagnostic performance of cerebrospinal fluid (CSF) biomarkers across patients affected by either Alzheimer’s disease (AD), tauopathies other than AD (TP), or vascular dementia (VD), and cognitively normal subjects (CNS). One hundred fifty-three patients were recruited and tested for classical AD CSF biomarkers- Amyloid-ß42 and tau proteins - and novel candidate biomarkers - neurofilament (NF-) light and microRNA (miR) -21, -125b, -146a, and -222.
All dementia patients had significantly higher concentrations of NF-light compared to CNS, with the TP group displaying the highest NF-light values. A significant inverse correlation was also observed between NF-light and cognitive impairment. Of the four miRNAs analyzed, miR-222 levels were significantly increased in VD patients compared to both CNS and AD. In addition, while NF-light showed a better diagnostic performance than miR-222 and classical AD biomarkers in differentiating TP and VD from CNS, classical AD biomarkers revealed higher performance in discriminating AD from non-AD disorders.
Overall, our results suggest that CSF NF-light and miR-222 are promising biomarkers that may help to diagnose non-AD disorders.
ObjectiveThis study aimed to determine the most appropriate cognitive and cerebrospinal fluid (CSF) biomarker setting to distinguish frontotemporal dementia (FTD) from Alzheimer’s disease (AD).MethodPatients with FTD, those with AD, and those without dementia were enrolled in this study. CSF amyloid-ß 42 (Aß42), total (t)-tau, and phosphorylated (p)-tau concentrations were determined by enzyme-linked immunosorbent assays. Cognition was evaluated by the Mini-Mental State Examination (MMSE) and its domain scores. The associations of CSF biomarkers with cognitive measures were examined using regression models and the diagnostic value of CSF biomarkers was determined by receiver operating characteristics curves.ResultsCSF Aß42 levels were lower, whereas t-tau/Aß42 and p-tau/Aß42 ratios were higher in patients with AD compared with those with FTD. Some MMSE domain scores were different in FTD and AD, but they did not improve the ability to distinguish between the two pathologies. Poor temporal orientation scores were associated with low Aß42 levels only in patients with FTD. The p-tau/Aß42 ratio reached sufficient levels of sensitivity and specificity to discriminate FTD with primary progressive aphasia from AD.ConclusionsThe ratio of CSF p-tau/Aß42 is a sensitive and specific biomarker for discriminating patients with primary progressive aphasia from those with AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.