Tνe emerμence of resistance to antimicrobial aμents is a μlobal public νealtν problem. quinolone FPQ-appears to be an promisinμ compound, all strains isolates were inνibited at a concentration of μ/ml.
Molecular docking studies have been carried out for a better understanding of the drugreceptor interactions. All the synthesized compounds have been subjected to molecular docking against targets that have been chosen based on the specific mechanism of action of the quinolones used in the antibacterial activity screening. A study of the characteristics and molecular properties of the small molecule known as ligand has been realized. In the first stage of the study, the 2D and 3D structures have been generated. The most stable conformer for each structure was obtained by geometry optimization and energy minimization. A series of topological, conformational characteristics and QSAR properties, important to assess the flexibility and the ability of the studied conformer to bind to the protein receptor, were determined and analyzed. These properties were discussed in order to assess the flexibility and the binding ability of studied conformers to bind to the receptor protein. The docking studies have been carried out. The score and hydrogen bonds formed with the amino acids from group interaction atoms are used to predict the binding modes, the binding affinities and the orientation of the docked quinolones in the active site of the protein receptor.
Quinolones are an important class of heterocyclic compounds that possess interesting biological activities like antimicrobial, antitubercular, and antitumor. The objective of this study is to evaluate in silico the antitumoral and antimycobacterial activity of some quinolone derivatives by using CLC Drug Discovery Workbench Software. Docking studies were carried out for all ligands, and the docking scores were compared with the scores of standard drugs, topotecan and levofloxacin. The docking studies have been carried out to predict the most possible type of interaction, the binding affinities, and the orientations of the docked ligands at the active site of the target protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.