Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.
BackgroundVon Hippel-Lindau (VHL) disease is a rare oncological disease with an incidence of 1:36,000, and is characterized by the growth of different types of tumours. Haemangioblastomas in the central nervous system (CNS) and retina, renal carcinoma and pheochromocytomas are the most common tumours. The absence of treatment for VHL leads to the need of repeated surgeries as the only option for these patients. Targeting VHL-derived tumours with drugs with reduced side effects is urgent to avoid repeated CNS surgeries. Recent reports have demonstrated that propranolol, a β-blocker used for the treatment of hypertension and other cardiac and neurological diseases, is the best option for infantile hemangioma (IH). Propranolol could be an efficient treatment to control haemangioblastoma growth in VHL disease given its antiangiogenic effects that were recently demonstrated by us. The main objective of the present study was the assessment of the efficacy and safety of propranolol on retinal haemangioblastoma in von Hippel-Lindau disease (VHL).Methods7 VHL patients, from different regions of Spain, affected from juxtapapillary or peripheral haemangioblastomas were administered 120 mg propranolol daily. Patients were evaluated every 3 months for 12 months, at Virgen de la Salud Hospital (Toledo). The patients had juxtapapillary or peripheral haemangioblastomas but had refused standard treatments.ResultsPropranolol was initiated with a progressive increase up to a final dose of 120 mg daily. All tumours remained stable, and no new tumours appeared. The reabsorption of retinal exudation was noted in the two patients having exudates. No adverse effects were recorded. VEGF and miRNA 210 levels were monitored in the plasma of patients as possible biomarkers of VHL. These levels decreased in all cases from the first month of treatment.ConclusionsAlthough more studies are necessary, the results of this work suggest that propranolol is a drug to be considered in the treatment of VHL patients with retinal haemangioblastomas. VEGF and miRNA 210 could be used as biomarkers of the VHL disease activity.Trial registrationThe study has a clinical trial design and was registered at EU Clinical Trials Register and Spanish Clinical Studies Registry, EudraCT Number: 2014–003671-30. Registered 2 September 2014.
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhage. This vascular disease results mainly from mutations in 2 genes involved in the TGF-β pathway (ENG and ACVRL1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two plasma circulating miRNAs differentially expressed in HHT patients. The plasma level of miR-27a is increased while plasma level of miR-205 is reduced in both HHT1 and HHT2 patients compared to healthy controls. The role of miR-205 in endothelial cells was further investigated. Our data indicate that miR-205 expression displaces the TGF-β balance towards the anti-angiogenic side by targeting Smad1 and Smad4. In line, expression of miR-205 in endothelial cells reduces proliferation, migration and tube formation. This study not only suggests that detection of circulating miRNA (miR-27a and miR-205) could help for the screening of HHT patients but also provides a functional link between the deregulated expression of miR-205 and the HHT phenotype
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.