Water temperature regulates many processes in lakes; therefore, evaluating it is essential to understand its ecological status and functioning, and to comprehend the impact of climate change. Although few studies assessed the accuracy of individual sensors in estimating lake-surface-water temperature (LSWT), comparative analysis considering different sensors is still needed. This study evaluated the performance of two thermal sensors, MODIS and Landsat 7 ETM+, and used Landsat methods to estimate the SWT of a large subtropical lake. MODIS products MOD11 LST and MOD28 SST were used for comparison. For the Landsat images, the radiative transfer equation (RTE), using NASA’s Atmospheric Correction Parameter Calculator (AtmCorr) parameters, was compared with the single-channel algorithm in different approaches. Our results showed that MOD11 obtained the highest accuracy (RMSE of 1.05 ° C), and is the recommended product for LSWT studies. For Landsat-derived SWT, AtmCorr obtained the highest accuracy (RMSE of 1.07 ° C) and is the recommended method for small lakes. Sensitivity analysis showed that Landsat-derived LSWT using the RTE is very sensitive to atmospheric parameters and emissivity. A discussion of the main error sources was conducted. We recommend that similar tests be applied for Landsat imagery on different lakes, further studies on algorithms to correct the cool-skin effect in inland waters, and tests of different emissivity values to verify if it can compensate for this effect, in an effort to improve the accuracy of these estimates.
The objective of the present study was to develop a combined system composed of anaerobic biofilter (AF) and floating treatment wetlands (FTW) coupled with microbial fuel cells (MFC) in the buoyant support for treating wastewater from a university campus and generate bioelectricity. The raw wastewater was pumped to a 1,450 L tank, operated in batch flow and filled with plastic conduits. The second treatment stage was composed of a 1000 L FTW box with a 200 L plastic drum inside (acting as settler in the entrance) and vegetated with mixed ornamental plants species floating in a polyurethane support fed once a week with 700 L of wastewater. In the plant roots, graphite rods were placed to act as cathodes, while on the bottom of the box 40 graphite sticks inside a plastic hose with a stainless-steel cable acting as the anode chamber. Open circuit voltages were daily measured for 6 weeks, and later as closed circuit with the connection of 1000 Ω resistors. Plant harvestings were conducted, in which biomass production and plant uptake from each of the species were measured. On average, system was efficient in reducing BOD
5
(55.1%), COD (71.4%), turbidity (90.9%) and total coliforms (99.9%), but presented low efficiencies regarding total N (8.4%) and total P (11.4%). Concerning bioenergy generation, voltage peaks and maximum power density were observed on the feeding day, reaching 225 mV and 0.93 mW/m
2
, respectively, and in general decaying over the 7 days. In addition, plant species with larger root development presented higher voltage values than plants with the smaller root systems, possible because of oxygen release. Therefore, the combined system presented potential of treating wastewater and generating energy by integrating FTW and MFC, but further studies should investigate the FTW-MFC combination in order to improve its treatment performance and maximize energy generation.
Anaerobic digestion of olive mill wastewater (OMW) in admixture with anaerobically digested piggery effluent (ADPE) was investigated. Successive volumetric increases of OMW ranging from 8 to 91% were mixed with ADPE and treated through an upflow anaerobic filter to promote gradual adaptation of the microbial consortium. The response of the digester was positive, and only at 91% v/v OMW was lower reactor performance obtained, suggesting that a concentration on the order of 83% v/v was the highest in terms of the efficiency and stability of the reactor. At this inlet composition, the mixture loading rate varied from 5.0 to 5.7 kg chemical oxygen demand (COD)/m3·d and the total COD removal was 73 to 75%, with a gas production of 1.7 to 2.1 m3/m3·d (66 to 68% CH4). The corresponding volume of ADPE (17%) was enough to maintain an influent ammonium‐nitrogen (NH4+‐N) concentration of 0.17 to 0.19 kg NH4+‐N/m3 which was practically spent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.