Disorders of Consciousness (DOC) like Vegetative State (VS), and Minimally Conscious State (MCS) are clinical conditions characterized by the absence or intermittent behavioral responsiveness. A neurophysiological monitoring of parameters like Event-Related Potentials (ERPs) could be a first step to follow-up the clinical evolution of these patients during their rehabilitation phase. Eleven patients diagnosed as VS (n = 8) and MCS (n = 3) by means of the JFK Coma Recovery Scale Revised (CRS-R) underwent scalp EEG recordings during the delivery of a 3-stimuli auditory oddball paradigm, which included standard, deviant tones and the subject own name (SON) presented as a novel stimulus, administered under passive and active conditions. Four patients who showed a change in their clinical status as detected by means of the CRS-R (i.e., moved from VS to MCS), were subjected to a second EEG recording session. All patients, but one (anoxic etiology), showed ERP components such as mismatch negativity (MMN) and novelty P300 (nP3) under passive condition. When patients were asked to count the novel stimuli (active condition), the nP3 component displayed a significant increase in amplitude (p = 0.009) and a wider topographical distribution with respect to the passive listening, only in MCS. In 2 out of the 4 patients who underwent a second recording session consistently with their transition from VS to MCS, the nP3 component elicited by passive listening of SON stimuli revealed a significant amplitude increment (p < 0.05). Most relevant, the amplitude of the nP3 component in the active condition, acquired in each patient and in all recording sessions, displayed a significant positive correlation with the total scores (p = 0.004) and with the auditory sub-scores (p < 0.00001) of the CRS-R administered before each EEG recording. As such, the present findings corroborate the value of ERPs monitoring in DOC patients to investigate residual unconscious and conscious cognitive function.
Resistive flex sensors can be used to measure bending or flexing with relatively little effort and a relativelylow budget. Their lightness, compactness, robustness, measurement effectiveness and low power consumption make these sensors useful for manifold applications in diverse fields.Here, we provide a comprehensive survey of resistive flex sensors, taking into account their working principles, manufacturing aspects, electrical characteristics and equivalent models, useful front-end conditioning circuitry, and physic-bio-chemical aspects. Particular effort is devoted to reporting on and analyzing several applications of resistive flex sensors, related to the measurement of body position and motion, and to the implementation of artificial devices. In relation to the human body, we consider the utilization of resistive flex sensors for the measurement of physical activity and for the development of interaction/interface devices driven by human gestures. Concerning artificial devices, we deal with applications related to the automotive field, robots, orthosis and prosthesis, musical instruments and measuring tools. The presented literature is collected from different sources, including bibliographic databases, company press releases, patents, master's theses and PhD theses.
a b s t r a c tWe propose a methodological study for the optimization of surface EMG (sEMG)-based hand gesture classification, effective to implement a human-computer interaction device for both healthy subjects and transradial amputees. The widely commonly used unsupervised Principal Component Analysis (PCA) approach was compared to the promising supervised common spatial pattern (CSP) methodology to identify the best classification strategy and the related tuning parameters. A low density array of sEMG sensors was built to record the muscular activity of the forearm and classify five different hand gestures. Twenty healthy subjects were recruited to compute optimized parameters for ("within" analysis) and to compare between ("between" analysis) the two strategies. The system was also tested on a transradial amputee subject, in order to assess the robustness of the optimization in recognizing disabled users' gestures.Results show that RMS-WA/ANN is the best feature vector/classifier pair for the PCA approach (accuracy 88.81 ± 6.58%), whereas M-RMS-WA/ANN is the best pair for the CSP methodology (accuracy of 89.35 ± 6.16%). Statistical analysis on classification results shows no significant differences between the two strategies. Moreover we found out that the optimization computed for healthy subjects was proven to be sufficiently robust to be used on the amputee subject. This motivates further investigation of the proposed methodology on a larger sample of amputees. Our results are useful to boost EMG-based hand gesture recognition and constitute a step toward the definition of an efficient EMG-controlled system for amputees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.